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Abstract—This paper presents a family of discriminative man-
ifold learning approaches to feature space dimensionality reduc-
tion in noise robust automatic speech recognition (ASR). The spe-
cific goal of these techniques is to preserve local manifold struc-
ture in feature space while at the same time maximizing the sepa-
rability between classes of feature vectors. In the manifold space,
the relationships among the feature vectors are defined using non-
linear kernels. Two separate distance measures are used to char-
acterize the kernels, namely the conventional Euclidean distance
and a cosine-correlation based distance. The performance of the
proposed techniques is evaluated on two task domains involving
noise corrupted utterances of connected digits and read newspaper
text. Performance is compared to existing approaches used for fea-
ture space transformations, including linear discriminant analysis
(LDA) and locality preserving linear projections (LPP). The pro-
posed approaches are found to provide a significant reduction in
word error rate (WER) with respect to the more well-known tech-
niques for a variety of noise conditions. Another contribution of the
paper is to quantify the interaction between acoustic noise condi-
tions and the shape and size of local neighborhoods which are used
in manifold learning to define local relationships among feature
vectors. Based on this analysis, a procedure for reducing the impact
of varying acoustic conditions on manifold learning is proposed .

Index Terms—Cosine distances, dimensionality reduction, dis-
criminative manifold learning, feature extraction, graph embed-
ding, speech recognition.

I. INTRODUCTION

IGH dimensionality of feature vectors is a common

issue in pattern recognition, particularly in acoustic
feature analysis for automatic speech recognition (ASR). There
are many reasons for having high dimensional feature spaces.
For instance, static features can be augmented with dynamic
spectral information in speech feature extraction. One way
of accomplishing this is by combining multiple consecutive
Mel-filtered cepstrum coefficients (MFCC) feature vectors to
form high dimensional super-vectors that may represent on
the order of 100 milliseconds of speech. These super feature
vectors can have very high dimensionality, which may lead to
significant problems when performing a pattern recognition
task [1]. Therefore, it is a good practice to perform some sort of
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dimensionality reduction before applying a particular pattern
recognition algorithm to these features. Intuitively, a good
dimensionality reduction algorithm should be able to preserve
important information from the original feature space in the low
dimensional transformed feature vectors. Thus, the dimension-
ality reduction problem involves finding a good feature space,
where, for example, features belonging to different classes are
well separated.

This issue has inspired the use of subspace learning for fea-
ture extraction and dimensionality reduction. When estimating
projections from an original high dimensional feature space to
a low dimensional feature space, subspace learning establishes
optimization constraints so that the desired data relations and
distributions are preserved. One widely utilized family of such
algorithms is supervised discriminative techniques. Linear dis-
criminant analysis (LDA) [2]-[4] and heteroscedastic linear dis-
criminant analysis (HLDA) [5] are two examples of many such
algorithms that have been widely used in ASR for reducing fea-
ture space dimensionality while maximizing a criterion related
to the separability between classes of speech features. However,
one common issue with discriminative feature transformations
is their inability to capture the geometric and local distributional
structure of the data space.

Recent studies have demonstrated that the geometric and
local structure of the data space are important for classification
[6]. This has motivated the use of manifold learning techniques
in ASR. The underlying assumption of these techniques is
that the high-dimensional data can be considered as a set of
geometrically related points lying on or close to the surface of
a smooth low-dimensional manifold embedded in the ambient
space [1]. Manifold learning approaches, such as locality
preserving projections (LPP) [1], [7] take advantage of the
geometric distribution of data points in the high dimensional
space, and seek to preserve manifold constrained relationships
among data vectors.

Consider, for example, the set of four data points in Fig. 1.
Points A, B, C, and D are depicted to be lying on a 1-dimen-
sional manifold represented by a curve. For neighboring points
on the manifold, such as C and D, the closeness between the
two points can be approximated by the Euclidean distance di-
rectly. However, for points that are well separated on the man-
ifold, such as A and D, the direct Euclidean distance measured
between the two points will be much different than the distance
measured along the manifold curve. A simple dimensionality re-
duction algorithm may project the points A and D close together
in the target space. However, a manifold learning transformation
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Fig. 1. Illustration of dimensionality reduction for data embedded in a non-
linear manifold space with relative position information preserved [1].

would project the points A and D far from each other, thus pre-
serving the manifold based structure as illustrated in the figure.
This may be particularly important for speech signals as it has
been suggested that the acoustic feature space, constrained by
the articulatory dynamics associated with speech production, is
confined to lie on one or more low dimensional manifolds [8],
[9]. Therefore, a dimensionality reduction technique that explic-
itly models and preserves the data distribution along the under-
lying manifold structure should be more effective for ASR fea-
ture space transformations. However, manifold learning tech-
niques are inherently unsupervised and non-discriminative. As
a result, feature vectors belonging to different classes may not
be optimally separated in the transformed space.

Both the discriminative and the manifold learning based di-
mensionality reduction techniques have been shown to provide
transformed features leading to lower word error rates (WER) in
ASR[1], [4]. The work in this paper is motivated by the assump-
tion that there could be merit to integrating inter-class discrim-
ination aspect into manifold preservation algorithms in ASR.
The proposed framework incorporates a discriminative compo-
nent to manifold learning techniques by maximizing the sep-
arability between different classes while preserving the within-
class local manifold constrained relationships of the data points.
There has been some work on extending manifold based algo-
rithms with some notion of discriminative power in other ap-
plication domains. Cai et al. [10] reported significant improve-
ment in a face-recognition task while using a locality preserving
discriminative technique. Ma et al. [11], and Yan et al. [12]
also reported gain in face-recognition accuracy with a manifold
learning discriminative technique.

The discriminative manifold learning framework acts by
embedding feature vectors into one or more high-dimensional
graphs, and then optimizing the structure of these graphs
under a set of constraints. The nodes of the graphs represent
the feature vectors. The weight over an edge is a measure
of closeness (affinity) between the associated feature vectors
[12]. In this work, two different metrics have been used to
define the affinity weights, leading to two different approaches.
The first, locality preserving discriminant analysis (LPDA),
defines affinity between nodes as a Euclidean distance metric
[13]. The second, correlation preserving discriminant analysis
(CPDA), uses a cosine-correlation distance metric to define
the manifold domain affinity between nodes [14]. The use of
the cosine-correlation based distance metric is motivated by
work where a cosine distance metric has been found to be more
robust to noise corruption than Euclidean distances [11], [15],

[16]. Thus, CPDA is expected to demonstrate a performance
advantage over LPDA for high noise scenarios. Another impor-
tant contribution of this paper is to analyze the effect of noise
on the ASR performance on manifold learning algorithms. The
outcome of this analysis is an automated noise-aware manifold
learning (NAML) mechanism that can be used to increase the
robustness of manifold learning algorithms against noise.

The remainder of this paper presents the theory and applica-
tion of discriminative manifold learning, and is organized as fol-
lows. Section II provides a brief review of existing techniques
for feature space dimensionally reduction in ASR. Section III
presents the family of discriminative feature space transforma-
tions. Experimental studies comparing the ASR performance of
LPDA, CPDA and NAML with a number of well-known tech-
niques in terms of word error rate (WER) on a connected digit
speech-in-noise task and read newspaper speech-in-noise task
are provided in Section IV. Section V presents a discussion and
some issues pertaining to the application of this family of algo-
rithms to ASR. Finally, Section VI concludes the paper.

II. RELATED WORK

Brief summaries of discriminative and manifold learning
based feature space transformations are provided here as
background for the techniques presented in Section III. Linear
discriminant analysis (LDA) [2], [4] and locality preserving
projections (LPP) [1], [7] are presented as well known examples
of discriminative and manifold based feature space projections,
respectively. None of these techniques produce transformed
features whose distributions are consistent with the densities
of the continuous density hidden Markov models (CDHMM)
based ASR. The semi-tied covariance (STC) [17] procedure is
presented as a means for reducing the impact of this mismatch.

The general problem of dimensionality reduction in pattern
recognition can be defined as follows. Consider a set of labeled
or unlabeled feature vectors represented in the form of a ma-
trix X = [z1,--zx]T, where each row denotes a vector in
the high-dimensional source space R?. For labeled data, each
vector z; would also be associated with a class/label C(z;) €
{e1, ¢, -+, enr, }, where M, is the number of classes, and each
class ¢; contains IV; of the total N vectors. This data, X, (with
class labels, if available) is referred to as the training set. The
goal of a dimensionality reduction task is to estimate the op-
timal projection matrix P € R¥*" with m < d, to transform
vectors from the d-dimensional source space onto an m-dimen-
sional target space. The transformation is performed according
to

y1:PT$l VZ:1,2,,N (l)

where z; is an arbitrary vector in the source space, and y; is the
corresponding low dimensional vector in the target space.

A. Discriminative Techniques: Linear Discriminant Analysis

Discriminative algorithms, such as LDA and HLDA [5],
attempt to maximize the discrimination between classes of
feature vectors. While HLDA has in some cases demonstrated
performance improvements with respect to LDA, there is
some debate as to whether similar effects can be achieved by
applying a semitied covariance transform (STC) (discussed
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in Section II-C) with LDA [17], [18]. For this reason, LDA,
in combination with STC, is selected as a representative of
discriminant algorithms in this work. The following discussion
provides a brief description of LDA.

Suppose that for the aforementioned training set, each class,
ci, is characterized by its mean vector, p;, and the covariance
matrix, 3;. The prior probability of each class is given by p; =
N;/N.If p is the total sample mean of X, then the within and
between class scatter matrices can be defined as follows [2]:

N,
Sw = Zpizi (22)
i=1
1
Sp =3 ; (Nipind — ™). (2b)

LDA optimizes a class separability criterion by maximizing the
following objective function,

Pirgo = arg IIlIE)LX {tr(|PTSWP|‘1\PTSBPD} )]
(3) can be solved as a generalized eigenvector problem as given
in (4),

Sepl, = \iSwply, “)

where p{ 4 18 the 7th column of the LDA transformation matrix
P4, which is formed from the eigenvectors associated with the
m, largest eigenvalues. Further discussion of LDA can be found
in [2].

It should be evident that the within-class scatter is a mea-
sure of the average variance of the data within each class, while
the between-class scatter represents the average distance be-
tween the means of the data in each class and the global mean.
Thus, LDA aims to preserve the global class relationships; how-
ever, it does not capture the intrinsic local structure of the data
manifold.

B. Manifold Learning Approaches: Locality Preserving
Projections

The underlying idea of manifold learning based feature trans-
formations is to extend the manifold constrained relationships
that exist among the input data vectors to the vectors in the
projected space. Manifold based relationships can be character-
ized by a high dimensional graph connecting neighborhoods of
feature vectors. This process is referred to as graph embedding
(GE) [12]. In this graph, feature vectors, X, correspond to nodes
of the graph. The graph edge-weights denote the relationships
among the nodes and are given by the affinity edge-weight ma-
trix W = [w;;]nxn, where the {¢, j }th element of the affinity
matrix, w;;, defines the weight of the edge connecting the nodes
x; and x;. Such an embedding provides a strong mathematical
framework to represent the distribution and geometrical struc-
ture of data.

For a generic graph G, the relative scatter measure in the
target space can be given by,

Fg(P) = d{y; y;}wi;
i

(&)

where d{y,, ¥y} is a distance measure between vectors y; and
y; in the transformed space. Depending on whether the goal
is to preserve or diminish the concerned graph properties, the
optimal projection matrix P can be obtained by minimizing or
maximizing the scatter in (5). A detailed study and generaliza-
tion of various graph embedding based techniques can be found
in [12].

This work chooses LPP as an example of manifold based
techniques. Following (5), the objective function can be defined
as:

arg min ¢ > |ly; — g% wi (6)

we iz

where w;; = exp(—||z; —x,||*)/p when z; is in the near neigh-
borhood of x;, and 0 otherwise. The weight, w;;, is referred to
as a Gaussian heat kernel, and p is a scale factor controlling the
width of the kernel. The vector z; is said to be in the neighbor-
hood of z; if it lies within the k-nearest neighbors of ;.

The optimal value of the projection matrix Pj,, for mini-
mizing the objective function in 6 can be obtained by solving
the following general eigenvalue problem,

)

where I = C' — W is the Laplacian of the similarity matrix,
C is a diagonal matrix whose elements are the corresponding
column sums of the matrix W. The vector p{pp is the yth column
of the linear transformation matrix, P;,,,, which is formed from
the eigenvectors associated with the m smallest non-zero eigen-
values. A general discussion of LPP can be found in [7], with
ASR specific implementation in [1].

T T, j
XLX pippZ)\XCX pfpp

C. Semi-Tied Covariance

A common issue associated with all feature space transforma-
tion techniques when applied to ASR is the fact that the trans-
formed features are not guaranteed to be statistically indepen-
dent. However, because of practical limitations associated with
limited training data, most Gaussian mixture based CDHMM
ASR systems assume the feature vector dimensions to be “ap-
proximately uncorrelated”. This is a byproduct of the diagonal
covariance assumption imposed on the continuous Gaussian ob-
servation densities. Thus, the distribution of feature vectors is
mismatched with respect to the densities used for CDHMMs.
Therefore, there is a need to incorporate one of a set of pro-
cedures that maximizes the likelihood of the data with respect
to the diagonal Gaussian models. These procedures, including
the maximum likelihood linear transformation (MLLT) [18] and
semi-tied covariances (STC) [17], are applied in the transformed
feature space. It has been suggested that MLLT is equivalent to a
global STC transform [18], [19]. This work adopts the semi-tied
covariance (STC) approach for this purpose.

STC approximates full covariance modeling by allowing a
number of full covariance matrices to be shared across many
Gaussian components, instead of using component specific full
covariance matrices. Effectively, each component maintains its
own diagonal covariance. Each component consists of two ele-

ments, a component specific diagonal covariance matrix, EE,:';)H
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and a semi-tied regression class dependent non-diagonal matrix,
A" The form of the resultant covariance matrix is given by

E(m) :A(r)/z(m) A(‘r)'T

diag

®)

where m specifies the corresponding mixture index, and r refers
to the regression class. A detailed discussion of STC can be
found in [17].

III. THE FAMILY OF DISCRIMINATIVE MANIFOLD
LEARNING TECHNIQUES

The proposed family of algorithms incorporate discrimina-
tive training into manifold based non-linear locality preser-
vation. In order to formulate an optimality criterion based on
manifold preservation and inter-class separability, the feature
vectors are assumed to be residing on multiple class-specific
manifolds, which are characterized by two undirected weighted
graphs, namely the intrinsic graph, G;,,: = {X, W;,:}, and the
penalty graph, G,.,, = {X, W, }. The intrinsic graph refers
to the properties of the dataset that are to be preserved by virtue
of the transformation, whereas the penalty graph refers to the
properties that are to be discarded. In other words, the intrinsic
graph defines the relationships between the feature vectors
belonging to same class/sub-manifold, whereas the penalty
graph defines the relationships between the vectors belonging
to different classes/sub-manifolds. The possibility of speech
features lying on multiple manifolds have been suggested by
many researchers [9].

It is important to note that the characteristics of a graph, in-
cluding structure, connectivity and compactness, are primarily
governed by the weights on the edges of the graph, thus by
the affinity matrix W. Many different measures can be used to
define these graph based relationships. In this work, two dif-
ferent distance metrics are used, the conventional Euclidean dis-
tance and a cosine-correlation distance measure. This leads to
two different algorithms for feature space transformation and
dimensionality reduction, namely locality preserving discrimi-
nant analysis (LPDA) and correlation preserving discriminant
analysis (CPDA), respectively. These algorithms are described
in the following sections.

A. Locality Preserving Discriminant Analysis

In LPDA, the graph based relationships are characterized
using the Euclidean distance based Gaussian heat kernel. The
elements of the intrinsic and penalty graph weight matrices are
defined as,

—|E;—x;|?
Wit = {exp (H) ;Clx) = Clz), ez zy) =1

L)

0 ; Otherwise
9)
and
wren = Jexp (AEZBLY 0 # Olay), el ) = 1
“ 0 ; Otherwise

(10)
where p is the kernel scale parameter, C(z;) refers to the class
or label of vector z;. The function e(z;, ;) indicates whether z;

lies in the near neighborhood of ;. Closeness to a vector &; can
be measured either by k-nearest neighbors (kNN), or neighbors
within certain radius r. In the intrinsic graph, G;,;, a node x; is
connected to the k;,; nearest neighbors belonging to the same
class C(z;). Similarly, in the penalty graph, G, a node %; is
connected to the k., largest affinity neighbors not belonging
to the class C(z;). In this work, the optimal values of ;,,; and
kpen Were empirically determined to be kip: = kpen = 200.

Following (5), a scatter measure for a generic graph G in
LPDA is defined as,

Fg(P) =Yl — y;ll*wi, (11a)
i)
=2PTX(D-W)XTP (11b)

where D is a diagonal matrix whose elements correspond to the
column sum of the affinity matrix W, i.e., D;; = > ; Wij-

The goal in LPDA is to estimate the parameters of a projec-
tion matrix P € RY*™ with m < d (generally m < d), which
maximizes the sub-manifold discrimination in the projected fea-
ture space while retaining the within-sub-manifold inherent data
relations. Thus, the algorithm should maximize the scatter of the
penalty graph Fj.,(P), while at the same time minimize the
scatter of the intrinsic graph Fj,;(P). To this end, the ratio of
Fpern(P)to F, (P) is defined as a measure of class separability
and graph-preservation,

= - . (12)

Thus, an optimal projection matrix is the one to maximize the
expression in (12):

PLpDA:argmﬁxF(P). (13)
Or,
arg max {tr ((X(Di - WZ',)XTP)71
P
x (PTX(D, - Wp)XTP))} (14)

where the subscripts ¢ and p signify ‘intrinsic’ and ‘penalty’
graphs respectively. (14) can be formulated into a generalized
eigenvalue problem, given as follows:

(X(DP - WP)XT)pljpda = )‘J(X(D7 - Wi)XT)p{;;tla (15)

where p{p 4o 18 the jth column of the transformation matrix
Pria € R?*™ and is the eigenvector associated with the jth
largest eigenvalue. Thus the eigenvectors corresponding to
largest eigenvalues constitute the optimal LPDA projection
matrix Pjpqq.

B. Correlation Preserving Discriminant Analysis

CPDA follows the same framework as LPDA, but instead
uses a cosine-correlation based distance measure to characterize
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the relationships between the graph nodes. The motivation for
using a cosine-correlation based distance measure arises from
the fact that magnitude of the cepstrum vectors, and hence the
Euclidean distances based acoustic models are highly suscep-
tible to ambient noise [20]. It has also been found that the an-
gles between cepstrum vectors are comparatively more robust
to noise [21]. This suggests a potential advantage to a feature
space transformation estimated using a cosine-correlation based
objective function, particularly in the context of noise robust
ASR.

The first step of training the coefficients of a CPDA trans-
formation is to project the feature vectors onto the surface of a
unit hypersphere. This has the effect of discarding magnitude
information while retaining the correlation based relationships
between data vectors. CPDA provides a projection of the fea-
tures from the source d-dimensional hypersphere to the target
m-dimensional hypersphere. The projected features are given
by, y; = Plx;/| P x;||. Note that such a projection is non-
linear. The rest of the algorithm formulation for CPDA is very
similar to that for LPDA. The feature vectors are embedded
into two undirected graphs, namely, G,y = {X,W,,:} and
Gpen = {X,Wyen}. Similarity between the nodes is repre-
sented by their cosine-correlation. The elements of the intrinsic
and penalty graph weight matrices are defined as,

int _ {eXp (W) $O(xi) = Clx)), eclmi z) = 1

w;; ]
0 ; Otherwise
(16)
and
o {exp(“ L) O # Olay)ediney) = 1
“ 0 ; Otherwise
(17)

where variables in (16) and (17) follow the same nomenclature
as those in (9) and (10), albeit the nearest neighbors are defined
in cosine-correlation sense.

Following (5), a generalized scatter measure for a graph G in
the transformed space can be given by

= Z lly; — yj||2wij (18a)
i#£]
2
Py,
> ||pT Pra| v O
i1 zz|| 1P ;|
= 22 (1 — ff’;> Wiy (18c¢)
i#j e

where, for two arbitrary vectors ,, and x,,, f,, = 4 /a:,:lfPPTxu,

and fy,, = foPT:vq,. Similar to LPDA formulation, the goal
is to maximize the scatter of the penalty graph F).,, (P), while
at the same time minimize the scatter of the intrinsic graph
Fin:(P). Tt is important to note here that because of the non-
linear nature of the projection, it is not possible to formulate the
CPDA objective function as the ratio of the scatter measures of
the two graphs. As a result, the optimal projection matrix cannot
be obtained by solving a generalized eigenvalue problem. For

this reason, the difference of the scatter measures is defined as
a measure of manifold separability and graph-preservation,

f’”’)., Pt (19
figy) o

F(P):Fpﬁn(P) mt —22(1
1#]

—1 pen

» — 1nt
where w;; * = wy; . The optimal projection matrix is

the one to maximize the above function, i.e.,

Pcppa = arg mlz)xx F(P). (20)
To find the optimal CPDA projection matrix, the gradient ascent
rule can be utilized as follows:

P.:=P+aVpF, with
ij T T fz i L § -ET
Vel =23, f;“f o
i#g J Il
a:;xT +$'$T .
—— Jff Pl 21)

where ¢ is the gradient scaling factor, and V p I represents the
gradient of (19) with respect to P.

Unfortunately, since /'(P) is a non-linear and non-convex
function, the gradient ascent is susceptible to converge to a local
optima. Therefore, a good initialization is critical for achieving
global optima. To this end, an initial projection is obtained by
neglecting the normalization of the transformed features to ap-
proximate to a linear solution, i.e., by setting y;, = PTs; A
closed-form solution for the initialization is then achieved by
solving the generalized eigenvalue problem [12], [13],

(X(D, - W,)XT)p; = A;(X(D: = W)XV )p,

J 77

(22)

where D is a diagonal matrix whose elements correspond to the
row sum of the matrix W. Note that the matrix X here repre-
sents the normalized feature vectors. The subscript ¢ and p sig-
nifies ‘intrinsic’ and ‘penalty’ matrices respectively. The vector
p, indicates the jth column of the initial transformation ma-
trix P.

C. Noise Aware Manifold Learning

All of the manifold based approaches for estimating linear
projections rely on edge-weights for characterizing local neigh-
borhoods in the feature space. These local neighborhoods are
defined by the shape and size of the exponential kernels as
given in (9)-(10) and (16)-(17). The ASR performance of the
manifold learning systems is reasonably robust with respect to
the choice of kernel size across varying speaker populations
and task domains. However, the interaction between the kernel
size and background noise has a significant impact on word
accuracy. Experimental results supporting these arguments
are shown in Section IV-B-IV-D. This section elaborates on
this dependence of kernel size on background noise level and
suggests an automated mechanism, referred to as noise-aware
manifold learning (NAML), for increasing the noise robustness
of manifold learning methods.
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Fig. 2. Illustration of application of noise aware manifold learning to ASR by
the example of LPDA.

The kernel governs the compactness of the neighborhood
graphs and the smoothness of the manifolds. The shape and
size of the kernel is determined by its scale parameter p. The
selection of this parameter has a crucial effect on the definition
of local neighborhoods, and consequently on the characteristics
of the linear feature space transformation [1], [22]-[24]. Using
a value of the scale parameter which is too large would tend
to flatten the kernel leading to a graph where all data pairs are
considered equally important. On the other hand, using a value
which is too small would result in a graph which lacks sufficient
smoothing of the manifold, thus resulting in a kernel which is
overly sensitive to noise. Thus, the optimal choice of the kernel
size and the governing scale parameter, p, is dependent on the
SNR level of the speech signal. These claims are supported by
experimental results presented in Section IV-D.

One could compensate for this dependence of the optimal
choice of kernel scale factor on SNR level by using multiple
scale parameters, each specific to a noise condition. As a demon-
stration of how the relationship between p and environmental
noise can be exploited, an approach involving the use of mul-
tiple scale factor dependent linear transformations is proposed.
This is referred to as noise-aware LPDA (N-LPDA).

During the training phase, multiple SNR dependent LPDA
projections and CDHMM models are obtained. This procedure
is carried out in three steps. First, an ensemble of LPDA projec-
tion matrices are trained from the intrinsic and penalty matrices
estimated from an ensemble of kernel scale factors, p. Second,
the optimal value of p and hence a specific LPDA transforma-
tion, that maximizes ASR performance for a given SNR level,
is identified heuristically. Finally, separate CDHMM models are
trained from the features obtained by using this ensemble of pro-
jection matrices.

Note that an intermediate step of estimating SNR for each
speech utterance is involved here. Recent research has produced
a number of highly accurate SNR estimation algorithms [25],
[26]. This work utilizes a hybrid SNR estimation algorithm
based on [25] and [26] to automatically estimate the SNRs
for the noise corrupted utterances in the Aurora-2 corpus. The
hybrid approach correctly estimates the SNR levels for 85% of
the utterances in Aurora-2 test set.

Given an ensemble of multiple SNR dependent LPDA
transformations, Fig. 2 describes the steps involved in applying
N-LPDA to ASR. SNR is estimated for each test utterance, and
the corresponding LPDA transformation matrix is identified.
Then feature-space transformation is performed using the
chosen LPDA matrix. Finally, the corresponding CDHMM
model is used for recognition.

IV. EXPERIMENTAL STUDY

This section describes the experimental study performed to
evaluate the ASR performance of features obtained using
the discriminative manifold learning approaches. Two
speech-in-noise corpora, a connected digit task and a read
newspaper task, are presented along with a summary of the
CDHMM ASR systems used in the experiments. The study
compares the word error rate (WER) obtained using LPDA and
CPDA to that obtained for the more well known techniques,
LDA and LPP, over a range of noise types and signal-to-noise
ratios (SNRs). The impact of the cosine-correlation based
distance measure as compared to Euclidean distance is also
considered by comparing the WER obtained using CPDA
to that obtained using LPDA. Finally, ASR performance of
NAML extension of LPDA (N-LPDA) is compared with that
of LPDA.

A. Task Domain and System Configuration

The ASR experiments in this work are conducted on two dif-
ferent datasets. The first is the Aurora-2 connected digit speech
in noise corpus. The standard Aurora-2 mixed-condition set is
used for training [27]. The training set contains a total of 8440
noise corrupted utterances collected from 55 male and 55 female
speakers. For this corpus, the ASR system was configured using
whole word CDHMM models with 16 states per word-model, 3
states for the silence model and 1 state for the short pause model.
There were 11 word-based CDHMM models. Each state was
modeled by a mixture of 3 Gaussians. This corresponds to the
standard baseline configuration for the Aurora-2 ASR system
specified in [27]. The test dataset consists of a total of 3003
utterances artificially corrupted by three different noise types
(subway, car, and exhibition hall) at signal-to-noise ratios (SNR)
ranging from 5 to 20 dB, and clean speech. The WERs obtained
for the baseline system configuration agrees with that obtained
in [27].

The second is the Aurora-4 read newspaper text speech-in-
noise corpus, which is obtained by adding noise to the Wall
Street Journal (WSJO0) read text corpus [28]. This corpus cor-
responds to a large vocabulary continuous speech recognition
task. The size of vocabulary is 5000 words. The standard
Aurora-4 bigram language model is used with a perplexity of
147. The standard Aurora-4 mixed-noise training set is used
for training. It contains about 14 hours of speech consisting of
a total of 7138 utterances from 83 speakers. The ASR system
is configured using cross-word triphone CDHMM models. The
system has three state silence models and a single state model
for inter-word silence. Each CDHMM state was modeled by
a mixture of 16 Gaussians. The test dataset consists of seven
subsets, where each subset contains 330 utterances from 8
different speakers. One subset corresponds to uncorrupted high
SNR speech, and the remaining six are artificially corrupted
by different noise types (car, babble, restaurant, street, airport
and train station) at signal-to-noise ratios (SNR) ranging from
5 to 20 dB. The baseline system configuration and WER per-
formance agrees with that given in [28].

Both of these corpora were created by adding noise from mul-
tiple environments to speech utterances spoken in a quiet envi-
ronment. Hence, they represent a simulation of actual speech in



TOMAR AND ROSE: FAMILY OF DISCRIMINATIVE MANIFOLD LEARNING ALGORITHMS 167

noise domains, and one must be careful about generalizing these
results to other speech-in-noise tasks.

For both sets of experiments, the baseline ASR systems
are configured using 12-dimensional static Mel-frequency
cepstrum coefficient (MFCC) features augmented by normal-
ized log energy, difference cepstrum, and second difference
cepstrum resulting in 39-dimensional vectors. The ASR perfor-
mance is reported in terms of word error rate (WER).

The feature space transformations are estimated using 117
dimensional super-vectors obtained by concatenating 9 frames
of MFCCs augmented with log energy. For discriminative
training of feature space transformations, class labels are de-
fined as the states of the continuous density hidden Markov
models (CDHMM). There are a total of 180 speech classes
for the Aurora-2 corpus. For the Aurora-4 corpus, multiple
triphone states are tied together based on the central phone to
give a total of 120 speech classes. The projection matrix P is
used to transform the 117-dimensional training and test vectors
into a 39 dimensional space. For both datasets, Aurora-2 and
Aurora-4, a neighborhood size of £ = £in: = kpen, = 200 is
chosen for estimating the intrinsic and penalty graph weights
from Section III. Values of the Gaussian kernel heat factor,
p, have been empirically chosen separately for each of the
three manifold learning approaches. The values for p were
empirically determined using a development speech corpus.
The values used for p are: 900 for LPP, 1000 for intrinsic and
3000 for penalty graph for LPDA, and 10~ 2 for the intrinsic
and penalty graphs of CPDA. Note that the same choice of the
kernel scale factor is used for the both datasets. Semitied Co-
variance transformations (STC) are applied prior to recognition
to account for the correlation introduced to the transformed
features by the LDA, LPP, LPDA and CPDA projections, as
described in Section II-C and [17].

B. Results for Aurora-2 Connected Digit Corpus

Table I compares the WER of CPDA and LPDA transformed
features with that of LDA and LPP transformed features for
three noise types and four SNRs ranging from 5 dB to 20 dB.
Four separate tables are displayed, one for each noise type
(subway, exhibition hall and car), and one for average over all
noise types. Each of these tables contains ASR WER for five
different systems. For each of these tables, the first row dis-
plays the “baseline” ASR WER obtained using mixed condition
HMM training when no feature transformation is performed.
The second row, labeled “LDA”, corresponds to application
of the LDA projection matrix to the concatenated MFCC
feature vectors as described in Section IV-A. The third row,
labeled “LPP” corresponds to the features obtained as a result
of the LPP approach. The fourth row “LPDA” corresponds to
features obtained by applying the LPDA transformation to the
concatenated super-vectors. The final row, labeled “CPDA”,
corresponds to the ASR WER when CPDA is used as the
feature space transformation technique.

For all but baseline features, STC transformations are per-
formed to minimize the impact of the data correlation resulting
from the application of feature space transformations. It is im-
portant to note that, without applying STC, ASR performance
degrades for all of the above transformations. For example,

TABLE I
WER FOR MIXED NOISE TRAINING AND NOISY TESTING ON
AURORA-2 SPEECH CORPUS FOR BASELINE, LDA, LPP, LPDA
AND CPDA. THE BEST PERFORMANCE HAS BEEN HIGHLIGHTED
FOR EACH NOISE TYPE PER SNR LEVEL

Noise Technique SNR (dB)
20 15 10 5
Subway Baseline 299 400 @ 6.21 11.89
LDA 2.25 2.93 5.29 12.32
LPP 2.33 350 571 13.26
LPDA 2.18 3.29 5.28 11.73
CPDA 2.30 291 4.54 11.24
Exhibition Baseline 3.34 3.83 6.64 12.72
LDA 2.63 3.37 6.67 14.29
LPP 256 423 8.55 16.91
LPDA 2.22 3.64 6.66 13.85
CPDA 2.30 295 537 12.59
Car Baseline 2.71 3.36 5.45 12.31
LDA 2.83 3.45 5.69 15.92
LPP 2.71 3.61 6.08 14.97
LPDA 2.30 277 519 12.73
CPDA 2.51 3.52 5.70 14.23
Average Baseline 3.03 3.73 6.10 12.31
LDA 2.57 3.25 5.88 14.18
LPP 2.53 3.78 6.78 15.05
LPDA 2.23 3.23 5.71 12.77
CPDA 2.37 313 520 12.68

without STC, the WER for LDA features increased by 40%
relative for 20 dB subway noise case [13]. Therefore, all
experiments in this work have used STC after feature space
transformations. This is consistent with the discussion in
Section II-C, and results that other researchers have obtained
when comparing the performance of feature space transforma-
tions with and without STC [13], [18], [19], [29].

The baseline WERs displayed for all conditions in Table I
agree with those reported in [27], [30]. Table I shows that LDA
transformation provides a consistent reduction in WER across
all noise types at high SNRs. This is consistent with results re-
ported for this task in [31].

The results in Table I demonstrate advantages of the pro-
posed discriminative manifold learning approaches, LPDA and
CPDA, over conventional techniques, LDA and LPP. A number
of observations can be made from this table. First, all techniques
provide reduced WER at high SNRs for most noise conditions.
Second, all techniques show smaller relative reduction in WER
at low SNR than at high SNR for most noise conditions. Third,
LPDA and CPDA perform better than the conventional tech-
niques, LDA and LPP, in most noise conditions with a relative
WER improvement ranging from 6 to 30%. This result appears
to support the assertion that the combination of manifold con-
straints and discriminative learning results in a transformed fea-
ture space that is well behaved and robust. Fourth, by comparing
the fourth and the fifth rows of Table I, it is clear that CPDA pro-
vides a larger reduction in WER than the Euclidean counterpart
LPDA at all but the highest SNR for most noise types. This re-
sult demonstrates the noise robustness of the cosine-correlation
based distance measure as compared to Euclidean distance in
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TABLE 11
WER FOR CLEAN TRAINING AND CLEAN TESTING ON AURORA-2
SPEECH CORPUS FOR LDA, LPP, LPDA AND CPDA. THE BEST
PERFORMANCES HAVE BEEN HIGHLIGHTED IN BOLD

Technique  Avg. WER  (Rel. Improvement)
Baseline 1.07 -

LDA 0.93 (13.08)

LPP 0.90 (15.89)

LPDA 0.83 (22.42)

CPDA 0.82 (23.36)

discriminative manifold learning. The noise type “Car” is a no-
table exception where all the feature space transformation tech-
niques were found to be less effective.

The statistical significance of the differences in WERSs for se-
lected system pairs in Table I are reported using the Gillick and
Cox matched-pairs significance test [32]. The WER obtained
using LPDA features and LDA features for 20 dB subway noise
is found to be statistically significant at a confidence level of
99.5%. Furthermore, the performance gains in WERSs reported
for LPDA with respect to LDA systems are found to be statis-
tically significant for all conditions except for the subway and
exhibition hall noise types at 10 dB SNR. For LPDA and CPDA
performance comparisons, the difference in WERs are found to
be statistically significant with a confidence level of 99.99% for
all conditions except for the subway and exhibition hall 20 dB
SNR.

Another important observation that can be made from Table I
is that relatively high error rates are obtained for LPP as com-
pared to all other techniques for most conditions. This may ap-
pear to contradict earlier results reported by Tang and Rose in
[1]. However, it should be noted that the work in [1] reports ASR
performance using LPP for a task involving relatively clean
training and test conditions, whereas the results in Table I corre-
spond to mixed noisy condition training and noisy testing sce-
narios. Table II presents the results for a clean training and clean
test scenario as an average over clean subsets from Aurora-2.
Along with WERs, the table also presents relative WER im-
provements with respect to the baseline. Note that, in this case,
LPP performs better than LDA, however, LPDA and CPDA re-
port even higher performance gains. These results are in agree-
ment with those reported in [1]. While highlighting the impor-
tance of LPDA over LPP, these experiments suggest that, though
the local geometry of the data plays an important role for clean
testing, it is the discriminative training that becomes important
in the presence on noise.

C. Results for Aurora-4 Read News Corpus

Table III compares the recognition performance of LPDA
transformed features with that of LDA transformed features and
the baseline system configuration for the Aurora-4 large vocab-
ulary task. The six noisy test scenarios consists of utterances
with SNRs ranging from 5 dB to 20 dB. Note that the perfor-
mance trends in Table III are similar to those in Table I.

The first column in Table III displays the labels of different
test cases. The second column gives ASR WER performance
for the baseline system, when no feature transformation is
performed. The third column, labeled “LDA”, corresponds to

TABLE III
WER FOR MIXED NOISE TRAINING AND NOISY TESTING ON
AURORA-4 SPEECH CORPUS FOR BASELINE, LDA, AND LPDA AND
(WER IMPROVEMENT RELATIVE TO LDA). THE BEST PERFORMANCE
HAS BEEN HIGHLIGHTED FOR EACH NOISE TYPE

Noise Type Technique
Baseline LDA  LPDA (rel. LDA)

Clean 15.34 15.09 13.97 (7.44)

Car 15.90 16.34  14.53 (11.08)
Babble 26.62 25.37  21.56 (15.02)
Restaurant 28.28 28.77 24.51 (14.81)
Street 31.59 29.87  27.46 (8.07)
Airport 23.65 23.65 18.96 (19.83)
Train Stn. 32.08 29.96  28.60 (4.54)
Average 24.78 24.15  21.37 (11.51)

application of the LDA projection matrix to the concatenated
MFCC feature vectors as described in Section IV-A. The fourth
column, labeled “LPDA” corresponds to the application of the
LPDA transformation to the concatenated super-vectors. The
last column also displays the relative WER reductions obtained
using LPDA features with respect to LDA features. Similar
to the Aurora-2 experiments, for both LDA and LPDA, STC
transformations are performed to minimize the impact of the
data correlation resulting from the application of feature space
transformations.

The results in Table III demonstrate that the effectiveness
of discriminative manifold learning LPDA over conventional
LDA for a large vocabulary continuous speech recognition
task. Similar to the results presented for the Aurora-2 corpus,
LPDA obtains improved WER performance over conventional
LDA across all noise types. The relative WER improvement
of LPDA with respect to LDA ranges from 4.54 to 19.83%.
The results presented in Table III are tested for the Gillick and
Cox matched-pairs significance test [32]. The WER improve-
ments using LPDA transformed features with respect to LDA
features are found to be statistically significant at a confidence
level of 99.98% for all conditions. The performance of CPDA
transformations was not evaluated on this task for practical
reasons. However, based on the similar performance trends
observed for the Aurora-2 and Aurora-4 corpora, one might
expect reductions in WER on this corpus that are similar to
those observed in Table I for Aurora-2.

The results in Table III demonstrate that the relative perfor-
mance gains obtained for the discriminative manifold learning
approaches generalize across task domains and speaker popu-
lations. Furthermore, as mentioned in Section IV-A, it is em-
pirically determined that the optimal settings of neighborhood
sizes and kernel scale factors used also generalize reasonably
well across task domains. This is important when considering
the application of these techniques to new corpora. However,
while these parameters were found to be robust with respect to
task domains, the next section demonstrates that they are not ro-
bust with respect to noise level.

D. Results for Noise Aware Manifold Learning

The impact of the kernel scale factor on neighborhood shape
and the influence of the environmental noise level on the choice
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TABLE 1V
COMPARISON OF LPDA ASR PERFORMANCE IN TERMS OF %-WER FOR THREE
DIFFERENT VALUES OF p, THAT IS, 800, 900, AND 1000 ON AURORA-2.
THE BEST CASES HAVE BEEN HIGHLIGHTED IN BOLD

Noise p Clean 20dB 15dB 10dB 5dB
Sub. 800 1.69 2.27 3.65 6.02 13.11
900 1.70 2.32 3.59 5.54 12.69
1000 1.83 2.43 3.29 5.25 11.82
Exh. 800 1.08 2.56 3.61 6.79 16.17
900 1.23 2.87 3.62 6.10 14.78
1000  1.38 2.56 3.72 6.08 14.04
Car 800 1.73 2.74 3.40 6.83 15.99
900 1.82 2.48 3.07 5.25 15.52
1000 2.19 2.27 3.02 5.04 15.33

of this factor was discussed in Section III-C. This section be-
gins by presenting experimental evidence that demonstrates this
influence. Following this, an implementation of noise aware
LPDA (N-LPDA) is presented and evaluated on the Aurora-2
task.

The results in Table IV show how the ASR WER over a range
of SNRs is influenced by the choice of p. ASR WER’s for the
Aurora-2 corpus using the multi-noise mixed condition training
scenario with the LPDA transformed features are given for three
different noise types (Sub.=subway, Exh.=exhibition hall, and
car). For each noise type, LPDA transformations were trained
using a range of kernel scale parameter, from p = 800 to p =
1000. Each noise type has five SNR levels (clean, 20 dB, 15 dB,
10 dB, and 5 dB).

It can be observed from the results in Table IV that a smaller
p value gives better performance in the case of clean speech and
high SNR compared to the case when a larger p value is used.
However, using a kernel with larger p value results in better per-
formance for low SNR conditions. This general trend is apparent
for all noise types.

N-LPDA was presented in III-C as a mechanism for com-
pensating for this dependence on the choice of p by using
multiple scale factors, each specific to a given noise level.
To demonstrate this mechanism, an ensemble of LPDA trans-
formations are trained using affinity and penalty matrices
relying on five different sets of kernel scale parameters:
{800, 800|900, 900, 1000,1000|3000}. The values in the
format ‘a|b* refer to the two different scaling parameters used
for the intrinsic and penalty graph kernels, respectively. These
values were empirically chosen based on ASR performance
obtained on a development set across a range of SNRs. The re-
sults of this approach are given in Table V for the various noise
conditions described earlier. Results for clean testing have been
omitted. For each noise type, ASR %-WERs are compared for
LPDA and N-LPDA. Note that the WERSs given in Table V for
LPDA are identical to those shown in Table I since the settings
p = 1000[3000 are the same. The last column in the table
lists ASR WER averaged over all listed SNR levels for each
noise condition. The last two rows in Table V, labeled “Avg.”,
display the ASR WERs for LPDA and N-LPDA averaged
across the different noise types. It is apparent from the results
in Table V that N-LPDA produces slightly better average ASR

TABLE V
ASR %-WER FOR MIXED NOISE TRAINING AND NOISY TESTING ON
AURORA-2 SPEECH CORPUS FOR LPDA USING p = 1000|3000 AND N-LPDA

Noise  Approach SNR (dB)
20 15 10 5 Avg.
Sub. LPDA 2.18 329 528 11.73 | 5.62
N-LPDA  2.18 325 525 11.44 | 5.53
Exh. LPDA 222 364 6.66 13.85 | 6.59
N-LPDA  2.28 336  6.08 13.85 | 6.39
Car LPDA 230 277 519 12.73 | 5.75
N-LPDA 236 292 5.04 12.60 | 5.74
Ave. LPDA 2.23 323 571 12.77 | 5.99
N-LPDA  2.25 3.18 546 12.63 | 5.88

performance for most conditions as compared to any single p
choice. These results suggest that choosing an optimal value
of p by selecting from an ensemble of alternative transforms
may be a plausible approach for reducing the impact of this
dependence.

V. DISCUSSION AND ISSUES

There are several aspects of the discriminative manifold
learning algorithms that lead to their apparent advantages over
the more well known approaches for feature space transforma-
tion. The primary factor contributing toward these advantages
is the fact that these techniques combine within class sub-man-
ifold learning with inter-class discrimination, as characterized
by the intrinsic and penalty graphs, G;n:; and Gp.,. LPDA
and CPDA essentially use non-linear mapping functions for
feature extraction and, therefore, have a greater capability for
exploiting geometrical knowledge of the feature space than
is possible for linear techniques for feature extraction. There
are a number of other factors contributing to the effectiveness
of the proposed discriminative manifold learning approaches.
This section highlights some of the important factors and issues
affecting these techniques.

A. Cosine-Correlation Distance Measure

The improvement in noise robustness reported in Section IV
for CPDA relative to LPDA is supported by many previous
studies. The fact that adding noise to clean speech results in dis-
tortion in the magnitude of cepstrum feature vectors but has a
relatively small effect on the angular affinity between cepstrum
vectors is well known [20]. Cosine-correlation based distance
measures have also been implemented in CDHMM based ASR
decoders and were found to achieve lower WERs on speech
in noise tasks than the standard Euclidean based measure [21].
It has also been shown in other application domains that co-
sine-correlation based distance metrics outperform Euclidean or
L1-distance metrics for classification tasks [11], [16]. Thus, the
CPDA results obtained in Section IV are consistent with pre-
vious work.

B. Graph Embedding

There are two distinct advantages that graph embedding pro-
vides to the discriminative manifold learning algorithms. The
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first is that it enables a mathematical representation of the distri-
bution and geometrical structure of data. The structure of these
graphs can be exploited to obtain well behaved feature-space
transformations. The second is that by formulating an ASR fea-
ture analysis problem in terms of graph structures and scatters
one can avoid making any assumption about the distribution
of data. This is important as common dimensionality reduction
approaches, namely principal components analysis (PCA) and
linear discriminant analysis (LDA), work under the assump-
tion of class conditional Gaussian distribution of the data [2].
The high degree of variability in speech production results in a
much more complex distribution. Graph embedding avoids such
assumptions.

C. Computational Complexity

It is well known that all manifold learning approaches to
feature space transformation have extremely high computa-
tional complexity when compared to other discriminant feature
transformations [11], [16]. The complexity primarily arises
from computing the affinity matrices W;,; and W .,,. The
Aurora-2 task described in Section IV-A involves 180 states
and a training corpus of 1.4 million 117-dimensional feature
vectors. The Aurora-4 task involves 6 million feature vectors
each having dimensionality of 117. These are far larger tasks
than those addressed in the application domains described in
[10], [11], [16]. This represents a definite disadvantage of the
discriminative manifold learning algorithms when applied to
the generally very large corpora associated with most speech
processing tasks. One mechanism currently being investigated
for reducing computational complexity is locality sensitive
hashing (LSH) [33], [34]. LSH enables fast nearest neighbor
search in high-dimensional spaces, thus allowing for fast com-
putation of affinity matrices W,; and W ,.,, [35], [36].

VI. CONCLUSION

This paper has presented a family of discriminative mani-
fold learning techniques for locality preserving feature space
transformation and demonstrated their performance on two
ASR tasks. The proposed approaches attempt to preserve the
within class manifold based local relationships while at the
same time maximizing the separability between classes. This is
achieved by embedding feature vectors into undirected graphs
by using nonlinear kernels and preserving or penalizing the
local structure of the graphs. Two approaches were presented
which rely on two different kernels that are based on Euclidean
and cosine-correlation distance measures. The performance
of the proposed techniques was evaluated on two speech in
noise tasks. When compared to well-known approaches such as
LDA and LPP, the discriminative manifold learning algorithms
demonstrated up to 30% reduction in WER. It was also shown
that the use of the cosine-correlation based distance measures
was more robust than those based on Euclidean distances when
speech is corrupted by noise. Furthermore, these performance
gains generalized across task domains and speaker populations.

The effect of acoustic noise conditions on manifold learning
approaches has also been investigated. This investigation led to
a multi-model approach for improving the robustness of man-
ifold learning based feature space transformations, referred to

as noise aware manifold learning (NAML). The approach was
shown to provide reduced WER across a range of acoustic con-
ditions with respect to the LPDA transformation implemented
without incorporating knowledge of background conditions.

The effectiveness of the discriminative manifold learning
based techniques should encourage widespread adoption of
these techniques over a range of ASR task domains. Existing
work is directed towards the issue of computational complexity
of manifold based techniques using locality sensitive hashing
(LSH) techniques [35], [36]. It is expected that this should
facilitate the application of these techniques to large speech
databases.
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