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Abstract
Manifold learning techniques have received a lot of attention in recent literature [1]–[4].
The underlying assumption of these techniques is that the high-dimensional data can be
considered as a set of geometrically related points lying on or close to the surface of a
smooth low-dimensional manifold embedded in the ambient space. These techniques have
been used in a wide variety of application domains, such as face recognition [5]–[8], speaker
[9] and speech recognition [10], [11]. In automatic speech recognition (ASR), previous
studies on this topic have primarily focused on unsupervised manifold learning techniques
for dimensionality reducing feature space transformations [12]–[14]. The goal of these
techniques is to preserve the underlying manifold based geometrical relationship existing
in the speech data during the transformation. However, these techniques fail to exploit
the discriminative structure between the classes of speech sounds. The work in this thesis
has investigated incorporating inter-class discrimination into manifold learning techniques.
The contributions of this thesis work can be divided in two major categories. The first is
the discriminative manifold learning (DML) techniques for dimensionality reducing feature
space transformation. The second is to use the DML based constraints to regularize the
training of deep neural networks (DNN).

The first contribution of this thesis is a framework for DML based feature space
transformations for ASR. These techniques attempt to preserve the local manifold based
nonlinear relationships between feature vectors while maximizing a criterion related to
separating speech classes [15]. Two di�erent techniques are proposed. The first is the
locality preserving discriminant analysis (LPDA) [16]. In LPDA, the manifold domain
relationships between feature vectors are characterized by a Euclidean distance based kernel.
The second technique is the correlation preserving discriminant analysis (CPDA), which
uses a cosine-correlational kernel [17]. The LPDA and CPDA techniques are compared to
two well known approaches for dimensionality reducing transformations, linear discriminant
analysis (LDA) and locality preserving projection (LPP), on two separate tasks involving
noise corrupted utterances of both connected digits and read newspaper text. The proposed
approaches are found to provide up to 30% reductions in word error rates (WER) with
respect to LDA and LPP.

The manifold learning techniques, both unsupervised as well as the proposed DML
techniques, su�er from two major issues. The first is the high computational complexity
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Abstract iv

associated with the computation of the manifold based neighborhood graphs [18]–[20], and
the second is the performance degradation in the presence of noise [21]. In this thesis, a class
of random projections based approximate near neighborhood estimation techniques known
as locality sensitive hashing (LSH) is investigated for addressing the issue of computational
complexity [22]–[24]. Application of LSH is shown to provide a 10 times speedup for LPDA
and a 9 times speedup for CPDA with minimal impact on their ASR performance [25], [26].
To address the issue of noise sensitivity, the interaction between acoustic noise conditions
and the shape and size of local neighborhoods which are used in manifold learning to define
local relationships among feature vectors is studied. It is shown through experimental
analysis that the performance degradation can be traced to the choice of the size of the
Gaussian kernel scale factor used for defining the local neighborhood structures. Based on
this analysis, a noise aware manifold learning (NaML) procedure for reducing the impact
of varying acoustic conditions on manifold learning is proposed and evaluated on a speech
in noise task [27]. It is shown that the NaML approach significantly reduces the speech
recognition WER over LPDA, particularly at low signal-to-noise ratios.

The final contribution of this thesis is to apply the DML based constraints to optimize
the training of DNNs for ASR [28], [29]. DNNs have been successfully applied to a variety of
ASR tasks, both in discriminative feature extraction and hybrid acoustic modeling scenarios
[30]–[33]. Despite the rapid progress in DNN research, a number of challenges remain in
training DNNs. In this part of the thesis, a manifold regularized deep neural network
(MRDNN) training approach is proposed that constrains the network learning to preserve
the underlying manifold based relationships between speech feature vectors. This is achieved
by incorporating manifold based locality preserving constraints in the objective criterion of
the network. Empirical evidence is provided to demonstrate that training a network with
manifold constraints strengthens the learning of manifold based neighborhood preservation
and preserves structural compactness in the hidden layers of the network. The ASR WER
obtained using these networks is evaluated on a connected digits speech in noise task and a
read news speech in noise task. Compared to DNNs trained without manifold constraints,
the MRDNNs provides 10 to 38.64% reductions in ASR WERs.
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Résumé
Les techniques d’apprentissage de variétés suscitent beaucoup d’intérêt dans la littérature
récente [1]–[4]. L’hypothèse sous-jacente à ces techniques est que les données de grande
dimension peuvent être considérées comme un ensemble géométrique de points disposés
sur (ou proches de) la surface d’une variété de dimension inférieure incluse dans l’espace
ambiant. Ces techniques ont été utilisées dans de nombreux domaines d’application, comme
la reconnaissance de visages [5]–[8]et de locuteurs [9] et la reconnaissance vocale [10], [11].
Pour la reconnaissance vocale automatique (RVA), les études existantes sont principalement
axées sur l’apprentissage non supervisé de variétés aux fins de réduire la dimensionnalité
de l’espace objet [12]–[14]. L’objectif de ces techniques est de préserver, au cours de la
transformation, la relation géométrique sous-jacente à la variété existant dans les données
vocales. Cependant, ces techniques n’exploitent pas les structures discriminatoires entre
les di�érentes classes de sons dans la parole. Les travaux de cette thèse portent sur l’ajout
de la discrimination interclasse dans l’apprentissage de variétés. Les contributions de cette
thèse peuvent être divisées en deux principales parties. La première regroupe les méthodes
d’apprentissage discriminatoire de variétés (DML) pour les transformations de l’espace objet
réduisant la dimensionnalité. La seconde est l’application des contraintes de DML pour
l’apprentissage des réseaux de neurones profonds (DNN).

La première contribution de cette thèse est de fournir un cadre pour l’apprentissage
discriminatoire de variétés (DML) pour les transformations de l’espace objet en RVA. Ces
techniques tentent de préserver les relations non linéaires basées sur une variété locale
entre les vecteurs objets tout en maximisant un critère de séparation des classes de paroles
[15]. Deux techniques di�érentes sont proposées. La première est l’analyse discriminante
préservant la localité (LPDA) [16]. Avec LPDA, les relations entre les vecteurs objets
propres à la variété sont caractérisées par un noyau utilisant la distance euclidienne. La
seconde méthode est l’analyse discriminatoire préservant la corrélation (CPDA), qui utilise
un noyau basé sur la similarité cosinus [17]. Les méthodes LPDA et CPDA sont comparées
à deux approches éprouvées pour les transformations réduisant la dimensionnalité, l’analyse
discriminatoire linéaire (LDA) et la projection préservant la localité (LPP), sur deux tâches
distinctes avec des enregistrements bruités de chi�res connectés et de journaux lus. Les
approches proposées réduisent jusqu’à 30% le taux de mots erronés (WER) par rapport à
LDA et LPP.
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Les méthodes d’apprentissage de variétés, tant les méthodes non supervisées que les
méthodes DML, présentent deux défauts majeurs. D’une part, la complexité des calculs de
graphes de voisinage des variétés est grande [18]–[20], et d’autre part, les performances se
dégradent en présence de bruit [21]. Dans cette thèse, une classe de méthodes d’estimation
de voisinages par projections aléatoires, appelée hachage sensible à la localité (LSH), est
examinée pour résoudre le problème de complexité algorithmique [22]–[24]. L’utilisation
de LSH accélère jusqu’à 10 fois LPDA et 9 fois CPDA, avec une modification minimale
de leurs performances en RVA [25], [26]. Pour pallier la sensibilité au bruit, on étudie la
relation entre le bruit audio et la forme et taille des voisinages locaux qui sont utilisés dans
l’apprentissage de variétés pour définir les relations entre vecteurs objets. Il est montré
au travers d’expériences que la dégradation des performances peut être liée au choix de
la taille du facteur de normalisation du noyaux gaussien utilisé pour définir les structures
des voisinages locaux. En s’appuyant sur cette analyse, une procédure d’apprentissage
de variétés résistance au bruit (NAML) est proposée pour réduire l’impact des conditions
acoustiques, et évaluée dans le cas d’un problème de parole avec bruit [27]. Il est montré
que l’approche NAML réduit de manière significative le WER pour LPDA, particulièrement
pour un rapport signal sur bruit faible.

La contribution finale de cette thèse est la mise en application des contraintes DML
pour optimiser l’apprentissage de réseaux de neurones profonds (DNN) pour la RVA [28],
[29]. Les DNN ont été utilisés avec succès sur un large éventail de problèmes de RVA, à la
fois pour l’extraction discriminatoire de caractéristiques et des scénarios de modalisation
acoustique hybrides [30]–[33]. Malgré l’avancée rapide de la recherche sur les DNN, de
nombreux problèmes se posent toujours pour leur apprentissage. Dans cette partie de la
thèse, une approche d’apprentissage pour un réseau de neurones profond régularisé par
une variété (MRDNN) est proposée. Elle permet de contraindre l’apprentissage du réseau
à préserver les relations propres à la variété sous-jacente entre les vecteurs objets, grâce
à l’ajout de contraintes de préservation de la localité dans le critère objectif du réseau.
Des preuves empiriques viennent étayer le fait que l’apprentissage d’un réseau avec des
contraintes sur les variétés accroît l’apprentissage de la préservation de voisinage basés
sur la variété et préserve la structure compacte des couches cachées du réseau. Le WER
pour la RVA obtenu avec ces réseaux est évalué sur un problème de chi�res connectés avec
bruit et un problème de journaux lus avec bruit. Comparés aux réseaux entraînés sans ces
contraintes de variétés, les MRDNN réduisent de 10 à 38.64% le WER pour la RVA.
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Chapter 1

Introduction

This thesis investigates the application of manifold learning based approaches for robust
automatic speech recognition (ASR). Manifold learning is used to exploit the local geometric
relationships for acoustic feature estimation in order to achieve better ASR accuracy and
noise robustness than conventional techniques. The contributions of this thesis work can
be divided in two major categories, namely the development of discriminative manifold
learning based acoustic feature space dimensionality reduction techniques and manifold
regularized training for deep neural networks (DNN).

This chapter provides an introduction to the main points of interest in this dissertation.
Section 1.1 provides a general introduction to manifold learning, which is the primary
topic of interest to this thesis. Section 1.2 introduces feature estimation and feature space
transformation techniques for ASR and highlights their limitations. An introduction to
manifold learning and related feature space transformations is provided in Section 1.1
followed by an overview of DNNs and their applications to ASR in Section 1.3. Section 1.4
summarizes the contributions made during this thesis work. Section 1.5 provides an outline
for the remainder of the thesis.

1.1 Manifold Learning

A manifold is a locally Euclidean topological space, i.e., each point of a manifold has
a neighborhood that can be continuously mapped to the Euclidean space of the same
dimensions and vice-versa. For example, the surface of the Earth can be locally mapped
to a 2-dimensional flat Euclidean space. Thus, surface of the Earth is a 2-dimensional



1 Introduction 2

manifold embedded in a 3-dimensional space. In this sense, manifold learning refers to
a class of techniques that learn a low-dimensional embedding of the data points lying
in a high dimensional space while preserving original characteristics of the data. These
techniques are motivated by suggestions that any interesting high-dimensional data can
be considered as a set of geometrically related points lying on or close to the surface of a
smooth low-dimensional manifold embedded in the ambient space [1], [19], [37].

Manifold learning techniques have been primarily used for unsupervised dimensionality
reducing transformations, where the local relationships between the data points in the
original space are preserved during the transform. These techniques have been successfully
applied to a wide range of application domains, such as image recognition [8], [20], phone
and speaker recognition [13], [38]. These techniques have also been used for regularizing
learning models such as regularized least squares (RLS) and support vector machines (SVM)
[39].

In this thesis, manifold learning is used for discriminative dimensionality reducing
transformations for robust feature estimation and for regularizing the training of deep neural
networks for acoustic modeling. These methods are further discussed in the rest of the
chapter.

1.2 Robust Feature Estimation in ASR

The goal of ASR is to find the most likely sequence of symbols such as words or sub-word
speech units from a stream of acoustic data. In a successful human-machine communication
scenario, a machine should be able to develop a functional equivalent of the speaker’s
intended message as e�ortlessly as humans can. However, this is a complex problem. Speech
is a dynamic signal with a high degree of variability. Utterances can di�er substantially in
length, intensity and the frequency spectrum even if the same words are spoken by the same
person. There are significant spectral di�erences between the speech of di�erent speakers.

Combined with the aforementioned issues, the presence of acoustic noise severely a�ects
the performance of a speech recognizer, often rendering the system unusable. Some examples
of background acoustic noise are engine and wind noise in a running car, mixed noises
in places like a train station or on a street. While humans are able to hold successful
verbal communication in a variety of di�cult acoustic environments, performance of an
ASR system severally degrades in the presence of noise. In fact, a human listener’s ability
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to recognize speech far exceeds that of a modern speech recognition system [40]. Additional
causes of acoustic distortion include filtering and other limitations of a recording device,
reverberation caused by multi-path propagation in far-field recording settings and distortions
caused by fading and other nonlinear e�ects in a varying communication channel.

Feature analysis or estimation refers to signal analysis performed in order to parameterize
a given speech waveform. Another goal of feature analysis is to find a feature space or feature
representation that is both good at separating di�erent classes of speech sounds and e�ective
at suppressing irrelevant sources of variation. A carefully engineered feature estimation
process should be able to minimize the degradation caused by microphone recording, analog
to digital conversion and sampling, and channel and acoustic environment. Developing
a feature estimation technique that produces well-behaved features for a variety of task
domains and noise conditions is a primary point of interest to this dissertation.

1.2.1 Mel Frequency Cepstrum Coe�cients

One of the most widely used feature representations for ASR is the Mel-frequency cepstrum.
Mel-frequency cepstrum coe�cient (MFCC) features and the corresponding Mel-filterbank
are motivated by the firing patterns of the hair cells situated on the cochlea in the inner ear
[41], [42]. MFCCs are defined as the real cepstrum of the short time frequency spectrum of
a speech signal. A block diagram of the MFCC feature extraction procedure is depicted in
Fig. 1.1. A detailed description of MFCC feature estimation is provided in Section 2.2.2.

s(t)
Speech
Waveform

Windowing and
Pre-emphasis

Spectral
Analysis

Mel-scale
Filterbank

logDiscrete Cosine
Transform

f i

MFCC Vectors

Speech
Frame

Linear
Spectrum

Mel
Spectrum

Fig. 1.1 Various building blocks of MFCC feature estimation

MFCCs give a fairly accurate measure of static features of speech; however, they fail to
capture the time evolution of the speech spectrum, also referred to as the dynamics of speech.
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In hidden Markov model (HMM) based speech recognition, observations or feature vectors
are assumed to be conditionally independent, given the HMM state, although temporal
correlation exists between frames [43], [44]. Therefore, it is desirable to capture this dynamic
spectral information in speech by other means. One of the most common techniques for
capturing these dynamics is to concatenate a set of static and dynamic features for each
speech frame, where the static features are computed using cepstral analysis and the dynamic
features are computed by the first and second order di�erences of the static features [45].

1.2.2 Dimensionality Reducing Feature space Transformations in ASR

While the MFCC feature vectors concatenated with the di�erences can capture the dynamics
of speech to some degree, the resultant vectors are known to have a high degree of correlation
among their components. This violates the diagonal covariance assumptions in ASR (see
Section 2.3.2.2). Another way of capturing the dynamics of speech is by concatenating
multiple consecutive MFCC feature vectors to form high-dimensional feature vectors that
may represent on the order of 100s of milliseconds of speech. These vectors can have
dimensionality as high as 1000, which may lead to significant problems when performing
a pattern recognition task. This is commonly known as the curse of dimensionality [46].
Therefore, it is a good practice to perform some sort of dimensionality reduction before
applying a particular pattern recognition algorithm to these features. An example of such a
transform is shown in Fig. 1.2, where a concatenated vector xi is transformed into a lower
dimensional vector y

i
.

· · · , f i, · · ·
MFCC Vectors

Frame
Concatenation

xi =

S

WWWWWWU

f i≠k
...

f i
...

f i+k

T

XXXXXXV

Dimensionality
Reducing
Transform

ASR
yi

Fig. 1.2 Example of a dimensionality reducing transformations for ASR
feature estimation. Feature vectors from multiple consecutive speech frames
are concatenated in order to capture the time evolution of speech spectrum.
This concatenated vector is then projected in to a lower dimensional space
using a linear transform. The output low-dimensional features are fed onto a
speech recognition system.

Intuitively, a good dimensionality reduction algorithm should also be able to preserve
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important information from the original feature space in the low dimensional transformed
feature vectors. Thus the dimensionality reduction problem entails finding a good feature
space, where, for example, similar features are clustered together and/or features belonging
to di�erent classes are well separated. This has motivated the use of subspace learning for
feature extraction and dimensionality reduction in ASR. When estimating projections from an
original high-dimensional feature space to a low dimensional feature space, subspace learning
establishes optimization constraints so that the desired data relations and distributions are
emphasized.

A widely used family of dimensionality reducing algorithms is supervised discriminative
techniques. Linear discriminant analysis (LDA) [47]–[49] and heteroscedastic linear discrimi-
nant analysis (HLDA) [50] are two examples of many such algorithms that have been widely
used in ASR for reducing feature space dimensionality while maximizing a criterion related
to the separability between classes of speech features. In ASR, these supervised techniques
are applied to continuous density hidden Markov model (CDHMM; see Section 2.3) based
acoustic models by associating feature vectors with classes corresponding to HMM states
or clusters of states. One common issue with discriminative feature space transformations
is their inability to capture the geometric and local distributional structure of the feature
space. This has motivated the use of manifold learning based techniques for dimensionality
reduction and feature space transformation in ASR. These techniques are discussed next.

1.2.3 Manifold Learning based Feature Estimation for ASR

The application of manifold learning methods to ASR is supported by the argument that
speech is produced by the movements of loosely constrained articulators [13], [51]. Motivated
by this, manifold learning techniques are used for dimensionality reducing feature space
transformations with the goal of preserving manifold domain relationships between data
vectors. One such example technique is locality preserving projections (LPP) [14], [19].
LPP aims to preserve manifold constrained relationships among data vectors during the
dimensionality reducing feature space transformation so that feature vectors close to each
other in the original space are also close to each other in the target space.

Manifold learning techniques are inherently unsupervised and non-discriminative. As a
result, feature vectors belonging to di�erent classes may not be optimally separated in the
resultant space. Discriminating between di�erent speech classes is a crucial aspect of speech
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recognition. The better separated the speech classes are in a feature space, the easier it
is to perform recognition. Another important issue with manifold learning based feature
estimation techniques is that most of such approaches provide linear transformations, which
may be incapable of e�ectively capturing the highly nonlinear nature of speech manifolds. It
has been shown that exploiting these underlying nonlinear structures of speech production
system can lead to significant gains in ASR performance [10], [13]. The third issue with
the application of manifold learning techniques to speech processing is their very high
computational complexity [19], [20]. This complexity originates from the need to calculate
a pair-wise similarity measure between feature vectors to construct nearest neighborhood
graphs, which are essential to all manifold learning techniques.

In conclusion, the state of the art feature estimation and transformation techniques
su�er from a number of shortcomings. While the MFCC based simple techniques fail to
capture the dynamics of speech, the discriminative feature space transformation techniques,
such as LDA, ignore the underlying manifold based relationships between speech feature
vectors. The manifold based techniques, such as LPP, do not discriminate between various
classes of feature vectors and thus may not be able to optimally separate the speech features.
The ASR performance of all of these techniques further degrades in the presence of noise.
Motivated by these issues, the first part of this thesis research proposes discriminative
manifold learning (DML) techniques that investigate the potential merit to integrating
discriminative learning into manifold preservation algorithms in ASR. The DML techniques
are discussed in Chapter 3 through 5.

1.3 Deep Neural Networks for ASR

Artificial neural networks, also referred to simply as neural networks (NNs), have been
widely applied to acoustic modeling in ASR [52], [53] (also see Section 2.7). However, it
was not until recently that researchers observed worthwhile gains in ASR performance
by using these models. The quintessential step in this direction has been the successful
application of deep neural networks (DNNs) to ASR tasks [54]–[56]. DNNs, as the name
suggests, are feed-forward neural networks with multiple hidden layers. The high modeling
capacity of DNNs provides an e�ective way to deal with the large variety of speech, speaker,
channel, and environmental conditions typically encountered in an ASR task [57]. As DNNs
are essentially multi-layer perceptrons (MLPs), they can be trained with the well-known
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error back propagation (EBP) procedure. The higher number of hidden layers give DNNs
incredible modeling capacity; however, it also means very large number of parameters and
high computational complexity. Therefore, deep networks are prone to over-fitting and
getting trapped in poor local optima [58], [59].

DNN training algorithms have received considerable attention in the recent literature
[58], [59]; this includes the approaches for optimizing DNN training. Hinton et. al [60]
proposed deep belief networks (DBNs) as an e�ective way of initializing DNN training. The
DBN pre-training procedure treats each consecutive pair of layers as a restricted Boltzmann
machine (RBM). The RBM parameters are trained in an unsupervised fashion by maximizing
the likelihood of input and outputs using a contrasive divergence algorithm [61], [62]. Bengio
et. al. [63] proposed another layer-wise training mechanism. In this approach, the DNN is
grown layer-by-layer by performing discriminative EBP training only on the last two layers
at a time. In a similar work, Seide et. al. [64] reported better ASR performance than DBN
pre-training by using a layer-by-layer discriminative training; however, contrary to Bengio
et. al., they updated the weights of the entire network after adding a new layer. Another
pre-training method is the stacked auto-encoder based pre-training [65], [66], and yet another
is presented in [67]. Many recent studies have shown that the network pre-training has
little impact on ASR performance if enough observation vectors, typically on the order of
hundreds of millions, are available for training [68], [69]. Therefore, there is no general
agreement on the importance of pre-training for DNNs, and an e�ective training of DNNs
for ASR remains an important open problem.

Another important issue with DNN training is the impact of the local structure of the
feature space on EBP optimization, including the features provided to the input of the
DNN as well as features produced at the output of hidden layers of the DNN. It has been
suggested that features’ propagation to higher layers of the DNN is well behaved if the input
feature space has a strong local structure [57]. Furthermore, de-noising auto-encoder has
been described as a mechanism for learning a low-dimensional manifold based representation
of the training data, albeit without explicitly imposing any such constraints [58], [65], [70],
[71].

Considering that manifold based constraints emphasize the underlying local structure of
speech features, manifold learning in DNN framework has the potential to address several
important learning issues. The research conducted in the second part of this thesis attempts
to address the issues related to DNN training by incorporating the local manifold based
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constraints into DNN training. Because of their distributed and nonlinear architecture,
neural networks are capable of learning highly nonlinear structures with large parameter
spaces and are flexible enough to combine diverse features [52]. Manifold regularized deep
neural networks are discussed in the Chapter 6.

1.4 Contributions

The first contribution of this thesis is a discriminative manifold learning framework for feature
space transformations in ASR. This is presented in Chapter 3. The second contribution,
as described in Chapter 4, is the application of locality sensitive hashing (LSH) based
fast neighborhood search algorithms to manifold learning techniques for reducing the
computational complexity of these methods. The third contribution, as given in Chapter
5, is the analysis of the impact of noise on manifold learning and discriminative manifold
learning methods and the development of a noise aware manifold learning (NaML) scheme.
The fourth contribution of this thesis work is the development of e�cient training algorithms
of DNNs using manifold regularization. This work is presented in Chapter 6. The rest of
this section provides a summary of these contributions.

1.4.1 Discriminative Manfiold Learning based Feature Space Transformations

The first contribution of this thesis is presented as a framework that incorporates a discrim-
inative component into manifold learning techniques in order to maximize the separability
between di�erent classes while preserving the within-class local manifold constrained rela-
tionships of the feature vectors. This results in a feature space where similar feature vectors
are close together and feature vectors belonging to di�erent classes are far apart. This is
discussed in Chapter 3. Discriminative manifold learning framework acts by embedding fea-
ture vectors into two separate high-dimensional graphs and then optimizing the structure of
these graphs under a set of constraints. In the graphs, the feature vectors are represented by
the nodes and closeness or a�nity between two feature vectors is represented by the weight
connecting the two nodes [16], [18]. In this work, two di�erent metrics have been used to
define the a�nity weights leading to two di�erent approaches. The first, locality preserving
discriminant analysis (LPDA), defines the a�nity between nodes as a Euclidean distance
metric [15], [16]. The second, correlation preserving discriminant analysis (CPDA), uses
a cosine-correlation distance metric to define the manifold domain a�nity between nodes
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[15], [17]. The use of the cosine-correlation based distance metric is motivated by studies
where cosine distance based metrics have been found to be more robust to noise corruption
than Euclidean distances [9], [20], [72]. Therefore, CPDA is expected to demonstrate a
performance advantage over LPDA in high noise scenarios.

Although this is the first study of applying discriminative manifold learning techniques
to ASR, there have been some work on extending manifold based algorithms with some
notion of discriminative power in other application domains [8], [18], [20].

1.4.2 Locality Sensitive Hasing for Manifold Learning

Chapter 4 of this thesis discusses the use of locality sensitive hashing (LSH) based methods
for fast construction of the neighborhood graphs in order to address the issue of high
computational complexity in manifold learning techniques. LSH creates hashed signatures
of vectors in order to distribute them into a number of discrete buckets such that vectors
close to each other are more likely to fall into the same bucket [22]–[24]. In this manner,
one can e�ciently perform similarity searches by exploring only the data-points falling into
the the same or close-by buckets.

1.4.3 Noise aware Manifold Learning

Chapter 5 of this thesis provides an analysis of the e�ect of noise on various feature
estimation techniques for ASR, namely MFCC, LDA, LPP and LPDA. It is shown that
even though the performance of all linear feature space transformation approaches degrades
when applied to noise corrupted speech, the discriminative manifold learning techniques are
the least a�ected [15]–[17], [27]. In addition, a NaML approach is presented that addresses
the interaction between acoustic noise conditions and structure of the local neighborhoods
used in manifold learning. It is shown that NaML is an e�ective way to apply manifold
learning techniques to varying acoustic environments in ASR [27].

1.4.4 Manifold Regularized Deep Neural Networks (MRDNN)

In Chapter 6 of this thesis, a manifold learning approach to regularize DNN back-propagation
training is proposed. This training procedure emphasizes local relationships among speech
feature vectors along a low dimensional manifold while optimizing network parameters.
This is achieved by imposing manifold based locality preserving constraints on the network
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outputs. The study is conducted in the context of DNN based feature estimation in a
tandem ASR configuration. Results are presented demonstrating the impact of MRDNN
training on both the ASR word error rates (WER) obtained from MRDNN trained models
and on the behavior of the associated nonlinear feature space mapping.

1.5 Organization of the Thesis

This chapter has presented a brief introduction to this thesis work. The remainder of this
thesis is structured as follows. Chapter 2 provides the necessary background for the rest
of the thesis. Chapter 3 presents the DML framework and the LPDA and CPDA feature
space transformation techniques. Chapter 4 presents the work done in investigating LSH
for addressing the issue of high computational complexity of manifold learning methods.
Chapter 5 presents NaML as an approach to address the issue of noise sensitivity in manifold
learning techniques. The application of manifold learning to regularize deep neural training
is presented in Chapter 6. Finally, Chapter 7 concludes the thesis and presents possible
topics of future work.
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Chapter 2

Background

This chapter reviews the concepts and theory for automatic speech recognition systems,
manifold learning and it’s application in ASR, deep neural networks, and other required
background for the work presented in this thesis. An overview of automatic speech recognition
as a statistical pattern recognition task is given in Section 2.1, followed by a discussion of the
main elements of a speech recognition system including front-end processing in Section 2.2,
acoustic modeling in Section 2.3, language modeling in Section 2.4, and decoding in Section
2.5. As a background of the discriminative manifold learning basedtechniques proposed
in this thesis, feature space transformation techniques are discussed in Section 2.6. The
second set of approaches investigated in this thesis involves the development of a new class
of algorithms for training deep neural networks. The discussion of these techniques requires
a background in neural networks and their application to ASR. This is discussed in Section
2.7.

2.1 Statistical Framework for ASR

Modern ASR systems are based on statistical modeling approaches, where the ASR problem
translates to finding the most likely sequence of symbols, such as word string, Ŵ =
w1, w2, . . . , wN , or other sub-word unit string, Û = u1, u2, . . . , uN Õ, from all possible such
sequences given an acoustic observation sequence, X = [x1, x2, . . . , xT ]€, where each xt is a
row vector representing the feature vector extracted from an observation window beginning
at time t, and € signifies the matrix transpose operation; see Section 2.2 for a detailed
discussion on feature extraction. There are a large number of word or phoneme sequences
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Fig. 2.1 An overview of automatic speech recognition.

which an ASR system need to search to find the most likely sequence, therefore the process
consists of a number of modules that are shown in Figure 2.1 and described throughout
this chapter.

Formally, an ASR system maps the observation vectors, X, to the optimum sequence of
words, Ŵ , which satisfies the maximum a posteriori (MAP) decision rule given as [73], [74],

Ŵ = arg max
W

p(W|X), (2.1)

where W represents a potential speech sequence, p(W|X) is the posterior probability of the
word sequence given the acoustic input. The conditional probability is evaluated over all
possible word sequences from the lexicon. The posterior probability can be expressed using
Bayes rule as,

p(W|X) = p(X|W)p(W)
p(X) , (2.2)

where

• p(X|W): probability of observing X under the assumption that W is the true
utterance,

• p(W): prior probability that sequence W is uttered, and

• p(X): average probability that X will be observed.

Note that the denominator, p(X), does not depend on the utterance W and is invariant
for all candidate word sequences. Therefore, it does not a�ect the outcome of finding the
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optimal sequence, and can be safely ignored. Thus, the final decision rule is,

Ŵ = arg max
W

Y
_]

_[
p(X|W)
¸ ˚˙ ˝

acoustic model probability

◊ p(W)
¸ ˚˙ ˝

language model probability

Z
_̂

_\
. (2.3)

Eq. (2.3) shows that the entire decision model can be decomposed into acoustic model and
language model probabilities. If phone or other sub-word level acoustic models are used,
Eq. (2.3) can be written as,

Ŵ = arg max
W

Y
_]

_[
p(X|U)
¸ ˚˙ ˝

acoustic model

◊ p(U|W)
¸ ˚˙ ˝

pronunciation model

◊ p(W)
¸ ˚˙ ˝

language model

Z
_̂

_\
, (2.4)

where

• p(X|U): acoustic probability of the sub-word acoustic model, and

• p(U|W): pronunciation model probability that a word string W is expanded into a
sub-word units string U .

For simplicity and tractability purposes, ASR systems assume independence between
the parameters of the acoustic model and language model. Both the acoustic and language
models are trained on labeled training sets. As with other machine learning systems, an
ideal ASR system should generalize well to unseen test data. During the test phase, a
delayed decision decoder uses the acoustic and language models to search for the most likely
word string for a given utterance. Typically words are expanded into phoneme context
dependent acoustic models to characterize co-articulation phenomena in continuous speech
[42], [73].

2.2 Front-end Processing

The first stage for an ASR system is to capture the continuous speech signal input and
parameterize it to an appropriate form for signal analysis and recognition. Typically the
speech signal is sampled by hardware devices such as computer sound cards into digital
signals. This involves both time discretization (sampling) and value quantization. This
digitized signal is analyzed for feature extraction to obtain a compact representation of speech.
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The goal of this process is to capture all relevant information necessary for distinguishing
speech units while discarding any irrelevant information. The front-end processing consists
of a number of steps as illustrated in Figure 2.2. The rest of this section describes these
steps.
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Fig. 2.2 Schematics of the MFCC feature extraction process.

2.2.1 The Spectrogram

The signal analysis of the present day ASR systems is based on short term spectral analysis
[41], [75]. The first step of the signal analysis is to partition the speech signal into a series
of short frames. The speech waveform, though highly non-stationary, is assumed to be
piecewise stationary. A common practice is to use a 25 ms wide Hamming window with
15 ms overlap between frames. Hamming window is used as a tapering function to reduce
the discontinuities and spectral leakage at the frame edges. A pre-emphasis filter is also
used to boost the energy at higher frequencies. Generally, a first order moving average high
pass filter is used. In simple form it can be implemented as out[t] = in[t] ≠ (1 ≠ –)in[t ≠ 1],
where – œ [0.9, 1]. Sliding window discrete Fourier transform (DFT) is then applied to each
speech frame to obtain the discrete short-time Fourier transform (STFT) or linear spectrum
as,

St[k] = St(Ê)|
Ê= 2fik

T

=
+Œÿ

m=≠Œ

s[m]w[t ≠ m]e≠jÊt|
Ê= 2fik

T
,

(2.5)
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     We    didn’t                      like         that

Fig. 2.3 Waveform and corresponding spectrogram for an utterance ‘we
didn’t like that’.

where s[m]w[t≠m] is a short-time section of the speech signal s[m] at time t. Eq. (2.5) should
be interpreted as sampling the discrete-time STFT at T discrete frequencies, Êk = 2fik/T ,
in a manner similar to how DFT is sampling the discrete-time Fourier transform at T

discrete frequencies.
The spectrogram of the speech signal is then obtained by keeping the log magnitude of

the discrete STFT,
St[k] = log |St[k]|2. (2.6)

An example of spectrogram is given in Figure 2.3. Spectrogram represents the relative
energy content in the di�erent frequency bins at di�erent time instants. The next step in
the front-end processing of a speech signal is the Mel filter bank [76], which converts the
linear discrete STFT spectrum to Mel frequency spectrum. This is described in the next
section.

2.2.2 Mel-Frequency Cepstrum Coe�cients (MFCC)

As discussed in Section 1.2.1, Mel-frequency cepstrum coe�cients (MFCC) is one of the
most common feature representation for speech. A block diagram of the MFCC feature
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extraction process is shown in Figure 2.2. The discrete STFT of each speech frame is
processed through a Mel-scaled filter bank consisting of a set of overlapping triangular
masks to form a vector of output coe�cients. Note that the Mel-filter bank is not a filter in
true sense and is only applied to the magnitude of the spectra. Phase information is lost at
this stage. The relation between linear frequency (Hz), and Mel frequency is given by,

fMel = 1127 log
A

1 + fHz

700

B

or, fMel = 2595 log10

A

1 + fHz

700

B

,

(2.7)

where fMel and fHz correspond to the frequencies in Mel and linear domains respectively.70 Homomorphic Speech Analysis

0 1000 2000 3000 4000
0

0.005

0.01

frequency in Hz

Fig. 5.7 Weighting functions for Mel-frequency filter bank.

in a total of 22 “filters.” The mel-frequency spectrum at analysis time
n̂ is defined for r = 1,2, . . . ,R as

MFn̂[r] =
1

Ar

Ur�

k=Lr

|Vr[k]Xn̂[k]|2 , (5.25a)

where Vr[k] is the triangular weighting function for the rth filter ranging
from DFT index Lr to Ur, where

Ar =
Ur�

k=Lr

|Vr[k]|2 (5.25b)

is a normalizing factor for the rth mel-filter. This normalization is built
into the weighting functions of Figure 5.7. It is needed so that a per-
fectly flat input Fourier spectrum will produce a flat mel-spectrum. For
each frame, a discrete cosine transform of the log of the magnitude of
the filter outputs is computed to form the function mfccn̂[m], i.e.,

mfccn̂[m] =
1

R

R�

r=1

log (MFn̂[r])cos

�
2�

R

�
r +

1

2

�
m

�
. (5.26)

Typically, mfccn̂[m] is evaluated for a number of coe�cients, Nmfcc,
that is less than the number of mel-filters, e.g., Nmfcc = 13 and R = 22.
Figure 5.8 shows the result of mfcc analysis of a frame of voiced speech
in comparison with the short-time Fourier spectrum, LPC spectrum
(discussed in Chapter 6), and a homomorphically smoothed spectrum.
The large dots are the values of log(MFn̂[r]) and the line interpolated

Fig. 2.4 A Typical Mel filter bank

The structure of a typical Mel filter-bank is shown in Fig. 2.4. The filter-bank emphasizes
the lower frequencies and has higher resolution at lower frequencies and lower resolution
at higher frequencies. This is motivated from the cochlear processing in human ear [77],
[78]. The logarithm of the amplitudes of the filter-bank outputs gives a vector of filter-bank
coe�cients. If there are a total of M filters in the filter-bank, the log energy of the mth

filter’s output is given as,

St[m] = log
A

T ≠1ÿ

k=0
|St[k]|2Hm[k]

B

0 Æ m < M, (2.8)

where Hm[k] is the transfer function of mth filter.
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The log compressed output of the Mel filter bank is then converted into a vector of
cepstral coe�cients by applying discrete cosine transform (DCT) to the M filter outputs,

ct,d =
M≠1ÿ

m=0
St[m]cos

A
fid(m ≠ 0.5)

M

B

for d = 1, . . . ,M, (2.9)

where ct,d is the dth coe�cient of the resultant feature vector obtained from speech frame
at time t. DCT also helps de-correlating the features within a frame. The output vectors of
this process are known as MFCC features of the speech signal and constitutes the basis
of most ASR systems. In speech recognition, usually only 12 cepstral coe�cients are used
along with the zeroth cepstral coe�cient, or the log energy, to give a 13 dimensional MFCC
feature vector.

2.2.3 Post Processing

MFCC features model the smoothed spectral envelope over the short-time stationary frames
of speech. MFCC is one of the most widely used feature representation in speech. However,
there are a number of post-processing steps that are crucial for high performing ASR
systems. This is particularly true for CDHMM based acoustic models. Two of the most
common post-processing procedures are discussed here.

2.2.3.1 Capturing the Dynamics of Speech Spectrum

In CDHMM based speech recognition, observations or feature vectors are assumed to be
conditionally independent, given the CDHMM state, although temporal correlation exists
between frames. This temporal evolution of speech spectrum is also found to be crucial in
the human auditory system [43], [44]. Therefore, it is desirable to capture this dynamic
spectral information in speech. This is usually done by augmenting the static MFCC
feature vectors either by the first and higher order di�erences or by concatenating multiple
consecutive static feature vectors to form high dimensional super-vectors.

The first order dynamic, also known as di�erence or delta, coe�cients can be calculated
as follows,

�ct =
q�

”=1 ”(ct+” ≠ ct≠”)
2 q�

”=1 ”2 (2.10)

The same equation can also be applied to the delta coe�cients to obtain the second order
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di�erence or delta-delta coe�cients, and in a similar manner to obtain other higher order
coe�cients. The final vector is then written as follows,

xt =

S

WWWWWWWWWWU

ct

...
�ct

...
��ct

T

XXXXXXXXXXV

. (2.11)

2.2.3.2 Cepstral Mean and Variance Normalization

Another important post-processing step is to normalize the mean and variance of the cepstral
features making them zero mean and unit variance. For cepstral mean normalization (CMN),
long term mean, typically that of a sentence, is subtracted from the coe�cients in order to
remove the e�ects of time-invariant convolutional distortions, such as those introduced by
the transmission channel, the recording device and lip-radiation. Similarly, cepstral variance
normalization (CVN) is used to remove the e�ect of noise to some degree. CMN, CVN, or
jointly cepstral mean and variance normalization (CMVN) are computed as,

CMN : xt Ω xt ≠ µ, (2.12)

CVN : xt Ω xt./‡, (2.13)

CMVN : xt Ω (xt ≠ µ)./‡, (2.14)

where µ is the maximum likelihood sample mean estimator computed as µ = 1
T

q
T

t=1 xt,
‡ = 1

T ≠1
q

T

t=1 ||xt ≠ µ||22 is the maximum likelihood sample variance estimator, and ./

signifies element wise division. Eq. (2.12) - (2.14) can be trivially used for o�-line use. For
on-line use, the moments are approximated by a running estimate from the past frames of
the current utterance. Both CMN and CVN are commonly used in ASR.

2.3 HMM based Acoustic Modeling of Speech

An acoustic model is a statistical representation of speech sounds that is capable of learning
from and representing the information present in the feature vectors. This information leads
to estimation of probability of observing an acoustic feature vector given that a particular
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utterance is spoken. A good model should also take into account the diverse speaking styles
and background conditions, while at the same time be robust against acoustic variability.
Researchers have explored a number of approaches for acoustic modeling speech, such as
dynamic time warping (DTW) [79], [80], neural networks (NNs) [52], [53] and hidden Markov
models [74], [81], [82]. Typically, HMMs are used to model the sequential properties of
speech, complemented by a second stochastic process, such as Gaussian mixture models
(GMMs) or NNs, for modeling the local properties of speech [33], [83], [84]. For the scope of
this thesis, GMMs are used for modeling the local properties of speech.

HMM based systems provide a rich and flexible mathematical framework for building
speech recognition systems and easily accommodate di�erent levels of phonological and
syntactical constraints. These statistical machine learning models are usually based on
speech units such as words or sub-word units and are trained on a large amount of speech
data containing many occurrences of the speech units in a variety of contexts. This deals
with the temporal and spectral variations as well as the coarticulation in speech [74].
Incorporating data from a large number of speakers in model training results in a speaker
independent model that should be able to take the inter-speaker variabilities into account.

An HMM is a finite state machine in which each state j corresponds to a unit of speech.
HMM is a generative model of speech; each state has an associated output distribution
that allows the acoustic data, x, to be probabilistic outputs of a (hidden) Markov chain
with an observation probability p(x|state = j). The models transitions to the next state
with a state-transition probability, a. The underlying state sequence is hidden and only the
emissions or outputs are observed. The models determines the unknown phone string from
the known outputs of the process, i.e., speech feature vectors. Two key assumptions are
made in the application of HMMs to ASR:

• Conditional independence: The probability of observing xt is conditionally independent
of all past observations and states given the current state, qt.

• First order Markov: The probability of transitioning to the next state, qt+1, is
independent of the past states, Qt≠1

1 = q1, q2, · · · , qt≠1, given the current state, qt:

p(qt|qt≠1, · · · , q1) = p(qt|qt≠1).

The above two assumptions are not valid for speech; however, they are important for

PhD Thesis · Vikrant Singh Tomar · McGill University



2 Background 20
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Fig. 2.5 An example of the left-to-right topology of HMM for ASR along
with state-transition and observation probabilities.

mathematical convenience. Despite these disadvantages, HMMs have proven to be the most
successful statistical models for speech.

The objective of HMM based acoustic modeling is to accurately estimate the parameters
of the HMMs from a training dataset and e�ciently compute the output probability p(X|W).
Typically, each phone or other sub-word unit of speech is modeled by a multi-state left-
to-right HMM, in which the only transitions allowed are the transition to the same state
or to the next right state [74]. An example of this topology is shown in Figure 2.5. The
first and last states are non-emitting enter and exit states, respectively. Speech signal is
assumed to be piece-wise stationary and producing independent and identically distributed
(iid) feature vectors within each HMM state. For example, when phone level models are
generated, each phone is represented by an HMM that consists of states corresponding to
segments of the phone such as onset, steady and release portion of vowels. An HMM, �,
can be characterized by following variables:

1. State of the chain at time t, qt, and total number of states, J .

2. The 1-step state-transition probability matrix, A = [ajk]J◊J , where,

ajk = p(qt = k|qt≠1 = j, �).

3. Observation probability for an arbitrary feature vector x in each state, B = {bj(x)},
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where bj(x) = p(x|qt = j, �) indicates the probability of observing x in state j at
time t. This is also known as the state emission probability. These probabilities
represent the local properties of speech spectrum. This probability estimation is
performed assuming some parametric form of the HMM states such as GMM or
NN. For instance, for a GMM model, the probability is represented by the similarity
between the given vector and the mean vectors of the Gaussians modeling the HMM
state and is measured as the negative exponent of Mahalanobis distance1. This is
further discussed in Section 2.3.2.2.

4. Initial state distribution, � = {fij}, fij = p(q1 = j, �).

Thus, an HMM ASR model is denoted as:

� = {A, B, �}. (2.15)

Application of HMMs to speech can be understood as a 3-parts problem:

• evaluate the acoustic likelihood of the model, �, given an observation sequence, X2

• estimate the optimal set of parameters in order to maximize the acoustic likelihood,
i.e., train the model given an observation sequence, X, and initial parameters of the
HMM model, �.

• decode the most likely word string given a model, �, and an observation sequence, X

These issues are discussed below.
1For two random vectors x and y belonging to the same distribution with covariance matrix �,

Mahalanobis distance is given by, d(x, y) =
Ò

(x ≠ y)T �
≠1(x ≠ y)

2Throughout this thesis, X, is used to denote all the feature vectors in a given set, X =
[x1, . . . , xt, . . . , xT ]€. Any sub- or super-script is avoided for simplicity. Where necessary, Xto

from is
used to denote a range of feature vectors. The same is true for other sequences such as W, Q, etc.
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2.3.1 Evaluating an HMM – Forward Algorithm

Evaluating an HMM refers to computing the score or likelihood p(XT

1 |�) given the observa-
tion sequence, XT

1 = [x1, x2, . . . , xT ]€,

p(XT

1 |�) =
ÿ

Q
T
1

p(XT

1 , QT

1 |�)

=
ÿ

Q
T
1

TŸ

t=1
p(qt|qt≠1, �)p(xt|qt, �). (2.16)

Calculating the likelihood as per Eq. (2.16) requires summation over all O(JT ) possible
state sequences. This can be computed e�ciently, O(J2T ), by using forward recursion:

–j(t) = p(X t

1, qt = j|�)

= p(xt|qt = j, �)
Jÿ

i=1
p(qt = j|qt≠1=i, �)p(X t≠1

1 , qt≠1 = i|�)

= bj(xt)
Jÿ

i=1
aij–i(t ≠ 1), (2.17)

where –j(t) is the forward probability of being in state j at time t after observing the
sequence X t≠1

1 . Therefore, the final probability is given by summing over the probability of
observing all possible state sequences at time t = T ,

p(XT

1 |�) =
Jÿ

j=1
–j(T ) (2.18)

2.3.2 Training an HMM – Expectation-Maximization Algorithm

Training an HMM refers to learn the parameters of model, � = {A, B, �}, to best describe
the observed data, X, or maximize the log likelihood,

L(�) = log p(X|�). (2.19)

Unfortunately, there is no closed form analytical solution for Eq. (2.19). This is because the
data is incomplete as the states are unknown (hidden). This problem is solved by iterative
Baum-Welch or forward-backward algorithm [81], [85], [86]. The Baum-Welch algorithm is
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a special case of expectation-maximization (EM) algorithm [87], [88].
The EM algorithm can be seen as a generalization of the maximum likelihood estimation

(MLE) method when the observable data is incomplete [41]. The observable data and the
unobservable or hidden data, Q, is jointly referred to as complete data. The observed data,
X, itself is referred to as incomplete data. The EM algorithm iteratively works in two steps
to maximize the likelihood of the complete data. In the E (expectation) step, posterior
distribution of the hidden data is estimated by using the current model parameters. In the
M (maximization) step, updates to the model parameters are determined such that the
complete data likelihood given the current estimate of the hidden data is maximized. The
updated model �̂ guarantees that L(�̂) Ø L(�).

M step:
Maximizing the complete data likelihood is achieved by maximizing the following auxiliary
or Q-function3,

Q(�, �̂) = E
Q

T
1 |XT

1 ,�[log p(XT

1 , QT

1 |�̂)]

=
ÿ

Q
T
1

p(QT

1 |XT

1 , �) log p(XT

1 , QT

1 |�̂)

=
ÿ

Q
T
1

p(XT

1 , QT

1 |�)
p(XT

1 |�)
log p(XT

1 , QT

1 |�̂), (2.20)

where E
Q

T
1 |XT

1 ,� denotes the conditional expectation over the hidden data, QT

1 , given the
observation sequence, XT

1 , and parameterized on the current model, �.
For an HMM based speech recognition system, the joint probability of the complete

data can be written as,

p(XT

1 , QT

1 |�̂) =
TŸ

t=1
aqt≠1qtbqt(xt), or

log p(XT

1 , QT

1 |�̂) =
Tÿ

t=1
aqt≠1qt +

Tÿ

t=1
bqt(xt). (2.21)

Therefore, the auxiliary function can be written in terms of the model parameters associated
3The Q function guarantees an increase in the log-likelihood unless a maxima is reached [87].
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with the state transition probabilities and observation probabilities,

Q(�, �̂) = Qai(�, âi) + Qbj
(�, b̂j). (2.22)

This allows separate maximization of the transition and observation parameters.

E step:
In the E step, the joint probability p(XT

1 , QT

1 |�) is computed for all possible state and
observation sequences. A forward-backward algorithm is used to compute this recursively.
To this end, similar to the forward probability defined in Section 2.3.1, a backward probability
is defined as,

—i(t) = p(XT

t+1|qt = i, �)

=
Jÿ

j=1
p(xt+1|qt+1 = j, �)p(qt+1 = j|qt = i, �)p(XT

t+2|qt+1 = j, �)

=
Jÿ

j=1
aijbi(xt+1)—j(t + 1). (2.23)

—i(t) is the probability of observing XT

t+1 given that HMM is in state i at time t; for
initialization, —i(T ) = 1/J . Using the forward and backward probabilities, one can write,

p(XT

1 |�) =
Jÿ

j=1
–j(t)—j(t). (2.24)

To compute the parameter updates for HMM, another quantity, “(i,j)(t), is defined, which
refers to the probability of transitioning from state i to state j at time t given observation
sequence and parameterized at the current model, i.e.,

“(i,j)(t) = p(qt≠1 = i, qt = j|XT

1 , �)

= –i(t ≠ 1)aijbj(xt)—j(t)
q

J

j=1 –j(T )
(2.25)

The EM algorithm is used in speech recognition to update the parameters of the HMM
model and those of the underlying model such as a GMM. For HMMs, X is observable but
the state sequences Q is hidden. For GMMs, the mixture indices are hidden. The following
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sections describe the estimation methods for the HMM and GMM parameters separately.

2.3.2.1 Updating HMM Transition Probabilities

Considering Eq. (2.20), (2.21) and (2.22), the auxiliary function for estimating the HMM
transition probabilities can be written as,

Qai(�, âi) =
Tÿ

t=1

J≠1ÿ

i=1

Jÿ

j=1

p(XT

1 , qt≠1 = i, qt = j|�)
p(XT

1 |�)
log âij (2.26)

The updated transition probabilities are obtained by maximizing Eq. (2.26) with respect to
the following constraints,

Jÿ

j=1
aij = 1 ’i. (2.27)

Using Lagrange multipliers based constrained optimization, the state transition probabilities
for the new model are estimated as,

âij =
q

T

t=1 “(i,j)(t)
q

T

t=1
q

J

k=1 “(i,k)(t)
. (2.28)

2.3.2.2 Updating Observation Probabilities – Gaussian Mixture Models

A suitable and commonly used distribution for representing the observation probability
vector, bj(xt), is the multivariate Gaussian distribution. The probability of observing a
feature vector xt in state j for an HMM model � is estimated as,

p(xt|qt = j, �) = N (xt; µ
j
, �j)

= 1
(2fi)d/2|�j|1/2 exp

5
≠1

2(xt ≠ µ
j
)€�≠1

j
(xt ≠ µ

j
)
6
, (2.29)

where µ
j

and �j denote the mean vector and covariance matrix of the jth state, respectively.
In modern ASR, the observations are assumed to be derived from a continuous distribu-

tion and the resultant structures are referred to as continuous density HMMs (CDHMMs).
A Gaussian distribution, however, provides a limited representation of the observation
probabilities of a CDHMM. By combining multiple weighted Gaussian densities, one can
obtain a more flexible and comprehensive distribution, Gaussian mixture models (GMM).
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Historically, the GMM-HMM model, where each state of the CDHMM is modeled by a
mixture of Gaussians, has been the most common architecture used in ASR. GMMs are
particularly useful because they are capable of approximating any continuous probability
density function [46]. For a GMM, the observation probabilities are given as,

bj(xt) =
Mÿ

m=1
cjmN(xt; µ

jm
, �jm)

=
Mÿ

m=1
cjmbjm(xt) (2.30)

where M indicates the total number of Gaussians or mixture components in state j, each
having its own density function bjm(xt) mean vector µ

jm
and covariance structure �jm.

The mixture weight of the mth Gaussian of jth state is given by cjm such that 0 Æ cjm Æ 1
and q

M

m=1 cjm = 1. In order to keep the number of parameters tractable, the components
of a feature vector are assumed to be independent which results in diagonal covariance
structures for the GMMs. This is a poor assumption for ASR; however, it helps in reducing
the computational complexity of HMM based speech recognition. For MFCC features, this
is achieved by virtue of DCT as discussed in Section 2.2.2. For other types of features,
either the whitening principal component analysis (PCA) transform is used or the semi-tied
covariance (STC) transform is used. STC is discussed in Section 2.6.3.

Similar to HMM, the GMM parameters updates are estimated using the iterative Baum-
Welch or EM algorithm. In the presence of multiple Gaussian mixture components per
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state, Eq. (2.21) can be written with respect to each mixture component as,

p(XT

1 , QT

1 |�̂) =
TŸ

t=1
aqt≠1qtbqt(xt)

=
TŸ

t=1
aqt≠1qt

Mÿ

mt=1
cqtmtbqtmt(xt)

=
Mÿ

m1=1

Mÿ

m2=1
· · ·

Mÿ

mT =1

I
TŸ

t=1
aqt≠1qtcqtmtbqtmt(xt)

J

=
ÿ

M
T
1

TŸ

t=1
aqt≠1qtbqtmt(xt)cqtmt

=
ÿ

M
T
1

p(XT

1 , QT

1 , MT

1 |�̂), (2.31)

where MT

1 denotes all possible mixture components, and mt indexes the mixture components
corresponding to the state qt. Similar to Eq. (2.20), an auxiliary function for the current
and updated model is defined as,

Q(�, �̂) =
ÿ

Q
T
1

ÿ

M
T
1

p(XT

1 , QT

1 , MT

1 |�)
p(XT

1 |�)
log p(XT

1 , QT

1 , MT

1 |�̂). (2.32)

Similar to Eq. (2.22), the auxiliary function can be separated in three parts for the transition
probabilities, component weights, and observation probabilities. The updates for the
transition probabilities, âij, have already been discussed in the previous section. The
updates for the component weights, ĉjm, are obtained by maximizing the corresponding
part with respect to the constraint q

M

m=1 cjm = 1 and are given as,

ĉjm =
q

T

t=1 ’jm(t)
q

T

t=1
q

M

m=1 ’jm(t)
(2.33)

The updates for the Gaussian components’ means and covariances are obtained by max-
imizing the auxiliary function’s part corresponding to the observation probabilities with
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respect to the constraint
s

Œ

≠Œ
bj(xt)dxt = 1 and are given as,

µ̂jm =
q

T

t=1 ’jm(t)xt

q
T

t=1 ’jm(t)
, (2.34)

�̂jm =
q

T

t=1 ’jm(t)(xt ≠ µ̂jm)(xt ≠ µ̂jm)T

q
T

t=1 ’jm(t)
, (2.35)

where ’jm(t) is the probability of being in component m of state j at time t and is defined
as,

’jm(t) = p(XT

1 , qt = j, mt = m|�)
p(XT

1 |�)
=

q
J

i=1 –i(t ≠ 1)aijcjmbjm(xt)—j(t)
q

J

i=1 –i(T )
. (2.36)

GMMs are powerful tools for modeling distributions whose underlying distribution is
unknown, as is the case in acoustic modeling. The distribution itself is parameterized by
a balance between the number of mixtures, M , and estimation of observation probability
distributions. A large value of M can lead to over-fitting, whereas, a smaller value may not
produce a good representation of data. Modeling di�erent states with di�erent number of
mixture components may be even more beneficial.

2.3.3 Decoding an HMM – Viterbi Decoding

Decoding an HMM refers to finding the best path or state sequence, Q̂T

1 , that maximizes
the probability of generating a given observation sequence, XT

1 . To this end, a dynamic
programming algorithm known as Viterbi decoding is used [89]. Unlike to the forward
algorithm discussed in Section 2.3.1 that sums probabilities from di�erent paths coming to
the same destination state, Viterbi algorithm chooses the best path at any time, t:

vj(t) = p(X t

1, Qt≠1
t

, qt = j|�)

= max
1ÆjÆJ

[aijvi(t ≠ 1)]bj(xt), (2.37)

where vj(t) is the probability of the partial sequence Q̂t≠1
1 that is most likely to generate

the partial observation sequence OT

1 and end in state j at time t. To obtain the final best
state sequence, a back-pointer is used to track the previous most likely states to generate

PhD Thesis · Vikrant Singh Tomar · McGill University



2 Background 29

the partial observation sequence X t

1 and end in state j at time t,

Bj(t) = arg max
1ÆjÆJ

[aijvi(t ≠ 1)], (2.38)

where Bj(t) = 0. Finally, the best state sequence is retrieved as,

q̂t = Bq̂(t+1)(t + 1). (2.39)

The computational complexity of Viterbi decoding is O(J2T ). It should be noted that
in practice Viterbi algorithm can also be used as an approximate yet e�ective method to
evaluate HMMs instead of the forward algorithm. This is further discussed in Section 2.5.

2.4 Language Model, Vocabulary and Lexicon

Previous sections of this chapter have discussed the acoustic modeling for CDHMM based
speech recognition. This section presents the language model and related components of a
speech recognition system. Section 2.4.1 discussed the language models used in CDHMM
based speech recognition systems. Section 2.4.2 defines the vocabulary and lexicon.

2.4.1 Language Modeling of Speech

A language model is a statistical representation of the syntactic and pragmatic constraints
essential to a language. It provides the a-priori probabilities, p(WN

1 ), of a word sequence,
WN

1 = w1, w2, · · · , wN . Generally statistical models are used for this purpose. These models
typically require a large corpus to obtain good probability estimates.

One such widely accepted model is the n-gram language model that assumes the language
to obey an (n-1)th order Markov process. The probability of a word depends on its (n-1)
predecessors, i.e.,

p(WN

1 |�lm) =
NŸ

i=1
p(wi|W i≠1

i≠n+1, �lm), (2.40)

where �lm denotes a particular language model. Though higher order models, n, provide
more structured constraints, they also increase the risk of encountering word sequences that
are not seen in the training corpus. These sequences then have unknown probability. There
are two common approach to deal with unseen sequences. The first is discounting, which
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pre-allocates some probability mass for unseen sequences. The second is back-o�, which
start with a higher order model but backs o� to a lower order if a given sequences cannot
be allocated probability as per the higher order model.

2.4.2 Vocabulary and Lexicon

Vocabulary refers to the set of words that an ASR system learns and can recognize.
During decoding, the recognizer selects the best word sequences from the vocabulary. The
pronunciation or word to phoneme or other sub-word units mapping of these words are
defined in the dictionary. An expansion is only needed if sub-word units based CDHMM
models are used. The capacity of an ASR system is typically measured in terms of the size
of vocabulary. Therefore, speech tasks are categorized as small, medium or large vocabulary
tasks. The Aurora-2 task used in this thesis has a vocabulary size of 12 and is therefore a
small vocabulary task [90]. The Aurora-4 task used in this thesis contains a vocabulary of
5000 words and is therefore referred to as a medium vocabulary task [91]. These tasks are
further described in Section 2.8. A corpus with more than 10000 words is considered to be
a large vocabulary task.

Vocabulary and the language model are very dependent on a given task domain. For
example, an ASR system trained on a news corpus is not very likely to perform well in
a medical setting. Words that a system has not seen during training are called out-of-
vocabulary (OOV) words and negatively impact the performance of the recognizer. Having a
very large vocabulary also increases the size of the search space for the recognizer. Therefore,
it is important to choose the right size and contents of a vocabulary in order to achieve
high performance from an ASR system.

2.5 Scoring and Global Search

The final piece of an ASR system is to combine the acoustic model probabilities, p(X|W)
or p(X|�), and the language model probabilities, p(W), in order to find the optimum word
sequence that best represents the underlying acoustic sequence, p(W|X). This can be seen
as a two-part process described below.
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2.5.1 Local Acoustic Match

Local acoustic match refers to the observation probabilities associated with the states of a
CDHMM model. As discussed in Section 2.3.2.2, GMM is one of the most suitable models
for this purpose; some new models use a DNN instead [33]. Each of these probabilities or
comparisons can be viewed as a local acoustic match. Thus, for a given feature vector, this
module generates a vector of likelihoods for every possible state.

2.5.2 Delayed Decision Decoder – Viterbi Approximation

This module transforms the local hypotheses into a global decision. Typically, the acoustic
model score or likelihood is given by the forward probability, as shown in Eq. (2.16), where
the probability over all possible states sequences is summed. During the decoding, the most
likely word sequence can be approximated by the most likely state sequence. This is achieved
by approximating the summation with a maximum to find the best state sequence. With
this approximation, Eq. (2.3) becomes,

Ŵ = arg max
W

{p(X|W) ◊ p(W)}

= arg max
W

Y
]

[
ÿ

’Q

p(X, Q|W) ◊ p(W)

Z
^

\

u arg max
W

;
max

’Q

p(X, Q|W) ◊ p(W)
<

, (2.41)

where u signifies approximation. This equation is referred to as the Viterbi approximation
for decoding.

This section completes the discussion on the building blocks of a modern ASR sys-
tem. The next section discusses a number of well known approaches for feature-space
transformations as applied to ASR.

2.5.3 Word Error Rate

The work in this thesis uses word error rate (WER) as the metric of evaluating the
performance of ASR systems. WER is one of the most commonly used metric in the ASR
community. It takes into account three kinds of errors in a speech recognition systems,
namely substitution, deletion and insertion. For WER computation, first the recognized
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word string is aligned against the correct word string, and then the WER is computed as,

WER = Subs + Dels + Ins

Number of words in the correct string . (2.42)

The alignment algorithm is known as maximum substring matching problem. This is
handled using dynamic programming [41]. Due to this alignment, WER can also be applied
to continuous speech recognition systems. WER gives a fairly accurate measure of real-world
performance of ASR systems.

2.6 Feature Space Transformations for ASR

As motivated in Section 1.2.2, finding a good feature representation is an important aspect
of ASR. Conventional MFCCs are not able to capture the spectral evolution of speech.
Finding a feature representation which is able to capture the spectral evolution while
retaining the robustness of MFCCs is an active area of research in ASR. A number of
techniques in this area build upon the MFCC framework by applying some sort of feature
space transformations to high dimensional feature vectors derived from concatenating
multiple speech frames. These transformations aim at reducing the dimensionality of the
concatenated feature vectors and finding a feature space where it relatively easy to separate
di�erent speech classes.

This section provides brief summaries of two such frameworks, namely the discriminative
and manifold learning based feature space transformations. Linear discriminant analysis
(LDA) [47], [49] and locality preserving projections (LPP) [19] are presented as well known
examples of discriminative and manifold based feature space projections, respectively. None
of these techniques produce transformed features whose distributions are consistent with the
diagonal covariance assumption of the GMM-HMM based ASR. The semi-tied covariance
(STC) [92] procedure is presented as a means for reducing the impact of this mismatch.

The general problem of dimensionality reduction and feature space transformation can be
defined as follows. Consider a set of labeled or unlabeled feature vectors represented in the
form of a matrix X = [x1, · · · xT ]€, where each row denotes a vector in the high-dimensional
source space RD. For labeled data, each vector xj would also be associated with a class/label
c(xj) œ {c1, c2, · · · , cMc}, where Mc is the number of classes, and each class ci contains Ti
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of the total T vectors4. This data, X, (with class labels, if available) is referred to as the
training set. The goal of a dimensionality reducing algorithm is to estimate the optimal
projection matrix P œ RD◊d, with D π d, to transform vectors from the D-dimensional
source space onto an d-dimensional target space. The transformation is performed according
to

y
i

= P €xi ’i = 1, 2, · · · , T, (2.43)

where xi is an arbitrary vector in the source space, and y
i

is the corresponding low
dimensional vector in the target space.

2.6.1 Discriminative Techniques – Linear Discriminant Analysis

Discriminative algorithms, such as linear discriminant analysis (LDA) and heteroscedastic
LDA (HLDA) [50], attempt to maximize the discrimination between classes of feature
vectors. While HLDA has in some cases demonstrated performance improvements with
respect to LDA, there is some debate as to whether similar e�ects can be achieved by
applying a semitied covariance transform (STC) (discussed in Section 2.6.3) with LDA
[92]–[94]. For this reason, LDA, in combination with STC, is selected as a representative of
discriminant algorithms in this work. The following discussion provides a brief description
of LDA.

Suppose that for the aforementioned training set, each class, ci, is characterized by its
mean vector, µ

i
, and the covariance matrix, �i. The prior probability of each class is given

by pi = Ti/T . If µ is the total sample mean of X, then the within and between class scatter
matrices are defined as [47],

SW =
Mcÿ

i=1
pi�i (2.44a)

SB = 1
T

Mcÿ

i=1

1
Tiµi

µ€

i
≠ µµ

2
. (2.44b)

4From this section onwards, subscripts i and j are also used to index the feature vectors unlike t in
previous sections. This is done for easily representing feature vectors at multiple time instances such as xi

and xj instead of to having to write xt1 and xt2. The total number of feature vectors are still represented
by T .
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LDA optimizes a class separability criterion by maximizing the following objective function,

P lda = arg max
P

Ó
tr(|P €SW P |≠1|P €SBP |)

Ô
. (2.45)

Eq. (2.45) can be solved as a generalized eigenvector problem as given in Eq. (2.46),

SBpj

lda
= ⁄jSW pj

lda
(2.46)

where pj

lda
is the jth column of the LDA transformation matrix P lda, which is formed from

the eigenvectors associated with the m largest eigenvalues. Further discussion of LDA can
be found in [47].

It should be evident that the within-class scatter is a measure of the average variance of
the data within each class, while the between-class scatter represents the average distance
between the means of the data in each class and the global mean. Thus, LDA aims to
preserve the global class relationships; however, it does not capture the intrinsic local
structure of the underlying manifold.

2.6.2 Manifold Learning

As discussed in Section 1.1, manifold learning techniques assume the data points to lie
on or close to the surface of one or more low dimensional manifolds. The underlying idea
of manifold learning based feature transformations is to extend the manifold constrained
relationships that exist among the input data vectors to the vectors in the projected space.
Consider, for example, the set of four data points in Figure 2.6. Points A, B, C, and D are
depicted to be lying on a 2-dimensional manifold represented by the curve. For neighboring
points on the manifold, such as C and D, the closeness between the two points can be
approximated by the Euclidean distance directly. However, for points that are well separated
on the manifold, such as A and D, the direct Euclidean distance measured between the
two points will be much di�erent than the distance measured along the manifold curve. A
simple dimensionality reduction algorithm may project the points A and D close together in
the target space. However, a manifold learning transformation would project the points A
and D far from each other, thus preserving the manifold based relationships, as illustrated
in the figure.

Manifold based relationships can be characterized by a high dimensional graph connecting
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Fig. 2.6 Illustration of dimension-
ality reduction for two-dimensional
data embedded in a nonlinear man-
ifold space with relative position in-
formation preserved [14].

neighborhoods of feature vectors. This process is referred to as graph embedding (GE) [18].
In this graph, feature vectors, X, correspond to nodes of the graph. The graph edge-weights
denote the relationships among the nodes and are given by the a�nity edge-weight matrix
� = [Êij ]T ◊T , where the {i, j}th element of the a�nity matrix, Êij , defines the weight of the
edge connecting the nodes xi and xj. Such an embedding provides a strong mathematical
framework to represent the distribution and geometrical structure of data.

For a generic graph G, the relative scatter measure in the target space can be given by,

FG(P ) =
Tÿ

i,j=1
d{f(xi), f(xj)}Êij

=
Tÿ

i,j=1
d{y

i
, y

j
}Êij (2.47)

where d{·, ·} is a distance measure between two vectors. y
i

= f(xi) is the vector in the target
space that corresponds to the source-space vector xi; for linear transforms, y

i
= P €xi.

Depending on whether the goal is to preserve or discard the concerned graph properties, the
optimal projection matrix, P , can be obtained by minimizing or maximizing the scatter in
Eq. (2.47). A detailed study and generalization of various graph embedding based techniques
can be found in [18].

2.6.2.1 Locality Preserving Projections

Locality preserving projections (LPP) is chosen here as an example of manifold learning
based feature space transformation. Following Eq. (2.47), the optimal projection matrix is
obtained by minimizing a cost function related to Euclidean distances between the projected
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feature vectors,

Flpp(P ) =
Tÿ

i,j=1
||f(xi) ≠ f(xi)||2Êij, (2.48)

or, P lpp = arg min
P

Tÿ

i,j=1
||y

i
≠ y

j
||2Êij, (2.49)

where Êij =

Y
_]

_[

exp
1

≠||xi≠xj ||
2

fl

2
; xj is in the near neighborhood of xi

0 ; Otherwise.
(2.50)

The weight, Êij, is referred to as a Gaussian heat kernel, and fl is a scale factor controlling
the width of the kernel. The vector xj is said to be in the neighborhood of xi if it lies
within the k-nearest neighbors of xi.

The optimal value of the projection matrix, P , for minimizing the objective function in
Eq. 2.49 can be obtained by solving the following general eigenvalue problem,

XLX€pj

lpp
= ⁄XDX€pj

lpp
(2.51)

where L = D ≠ � is the Laplacian of the similarity matrix, D is a diagonal matrix whose
elements are the corresponding column sums of the matrix �, given by Dii = q

T

j=1 Êij.. The
vector pj

lpp
is the jth column of the linear transformation matrix, P lpp, which is formed from

the eigenvectors associated with the d smallest non-zero eigenvalues. A general discussion
of LPP can be found in [19], with ASR specific implementation in [14].

2.6.2.2 Manifold Regularization

Regularization is a common machine learning technique that is used to avoid over-fitting
the training data and control the capability of a classifier. Typically, the objective function
of the classifier is modified by adding a penalty term. Perhaps the most common form of
regularization is L2-norm regularization, where the L2-norm of the model parameters is
penalized in order to obtain a smooth decision function. Manifold regularization is a data
dependent regularization framework that is capable of exploiting the underlying manifold
based geometry of the data distribution. Manifold regularization framework is introduced
in [39] as an approach for incorporating manifold learning based structural constraints
into regularization based classification tasks. The authors have also presented manifold
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extended versions of regularized least squares and support vector machines algorithms for a
number of text and image classification tasks as example implementations of this framework.
This section briefly describes two example implementations of the manifold regularization
framework.

Laplacian Regularized Least Squares
Laplacian regularized least squares (LapRLS) is an extension of regularized least squares
(RLS) classifier obtained by adding a manifold based regularization term [39]. Given a set
of examples (xi, ci), i = 1, . . . , T (ci is the class label of xi), if f : x æ f(x) represents
a mapping in the reproducing kernel Hilbert space (RKHS) H, then the fully supervised
regularization framework estimates an unknown function by optimizing,

min
fœH

1
T

Tÿ

i=1
V (xi, ci, f) + “1||f ||2

K
+ “2

1
T 2

Tÿ

i,j=1
||f(xi) ≠ f(xj)||2Êij, (2.52)

where V is some loss function such as squared loss, (ci ≠ f(xi))2, for regularized least
square (RLS). K is a positive-semidefinite kernel function. The second part of Eq. (2.52)
represents the norm on the original ambient space; this helps in maintaining smoothness for
the assumed continuity of the source space. “1 is the corresponding regularization coe�cient
that controls the complexity of mapping in the ambient space. The last term in Eq. (2.52)
represents the manifold based constraints. Note that it is similar to Eq. (2.48). “2 is the
manifold regularization coe�cient. Similar to the case of standard RLS, the final solution
for the LapRLS is given as [39],

–ú = (JK + “1TI + “2LK)≠1c (2.53)

where J is a diagonal identity matrix, J = diag(1, . . . , 1) of the same dimensionality as the
gram matrix K; c = [c1, . . . , cT ] is the label vector. L = D ≠ � is the graph Laplacian
defined over the manifold graph G = {X, �}, where D is the diagonal sum matrix of �
given by Dii = q

T

j=1 Êij.

Laplacian Support Vector Machines
The manifold regularization framework can also be extended to other approaches, for
example, to support vector machines (SVMs) to produce Laplacian SVMs (LapSVMs) in
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[39]. LapSVMs extends conventional SVMs by adding a manifold regularization term to the
hinge-loss function and solving for the objective criterion given as follows,

min
fœH

1
T

Tÿ

i=1
(1 ≠ cif(xi)) + “1||f ||2

K
+ 1

T 2 “2

Tÿ

i,j=1
||f(xi) ≠ f(xj)||2Êij. (2.54)

Both LapRLS and LapSVM are primarily targeted at binary classification tasks where
the goal is to obtain a closest to truth classification f(xi) u ci for every feature vector xi.
The manifold regularization framework can also be utilized for feature space transformations,
where f(xi) represents a target feature representation corresponding to xi. Similar work
has been utilized for a phone recognition task in [10], however, no similar application to an
ASR task exists. It is one of the goals of this dissertation to utilize similar formalisms for
acoustic modeling for automatic speech recognition.

2.6.3 Semi-Tied Covariance

A common issue associated with all feature space transformation techniques when applied
to ASR is the fact that the transformed features are not guaranteed to be statistically
independent. Recall from Section 2.3.2.2 that GMM-HMM ASR systems assume the feature
vector dimensions to be approximately uncorrelated and impose the diagonal covariance
assumption on the continuous Gaussian observation densities. As a result, the distribution
of feature vectors is mismatched with respect to the densities used for CDHMMs. Therefore,
there is a need to incorporate one of a set of procedures that maximizes the likelihood of
the data with respect to the diagonal Gaussian models. These procedures, including the
maximum likelihood linear transformation (MLLT) [94] and semi-tied covariances (STC) [92],
are applied in the transformed feature space. This work has adopted the STC approach for
this purpose.

STC approximates full covariance modeling by allowing a number of full covariance
matrices to be shared across many Gaussian components, instead of using component specific
full covariance matrices. E�ectively, each component maintains its own diagonal covariance.
Each component consists of two elements, a component specific diagonal covariance matrix,
�(m)

diag
and a semi-tied regression class dependent non-diagonal matrix, A(r)Õ . The form of
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the resultant covariance matrix is given by

�(m) = A(r)Õ�(m)
diag

A(r)Õ
€ (2.55)

where m specifies the corresponding mixture index, and r refers to the regression class. A
detailed discussion of STC can be found in [92].

2.7 Artificial Neural Networks for ASR

GMM-HMM based ASR have been developed to the point where impressive speech recog-
nition performance can be achieved for LVCSR tasks in laboratories. However, speech
recognition is not a solved problem. Even the state-of-the-art ASR systems give low perfor-
mance when applied to real life scenarios. Some researchers consider GMMs to be a limiting
factor in the long-term goal of successful human-machine dialog. Furthermore, GMM-HMM
based ASR requires unrealistic assumptions about speech, for instance, the uncorrelated
features assumption discussed in Section 2.3. For these reasons, a number of researchers
have started to look for alternate avenues for acoustic modeling.

One of the alternative approaches that have been used for this purpose is artificial neural
networks (NNs) [52], [53]. Neural networks5 are highly flexible structures capable of learning
complex nonlinear relationships among data vectors. The most common NN architecture
used for speech recognition is multi-layer perceptions (MLPs). MLPs are feed-forward
neural networks with one visible input layer, one or more hidden layers, and one output
layer, as illustrated in Figure 2.7. Each layer consists of a number of units that simulates the
behavior of a neuron. The connections between units of di�erent layers are governed by the
weights connecting them. The weights connecting layer l to layer l + 1 are given by matrix
W l. The activation of a neuron unit is typically a nonlinear function of the weighted sum
of its inputs; the activation of all the units in (l + 1)th layer can be denoted in vector form
as as zl+1 = f(W l€zl), where zl is the activation or emission vector of the lth layer, and f

is the activation function of the units. One of the most often used activation functions is
5In this work, the terms artificial neural networks, neural networks, neural nets, and nets are used

interchangeably.
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Fig. 2.7 A generic MLP. x = [x1, . . . , x4] denotes the input vector, and
z = [z1, z2] is the corresponding output vector. The outputs are posterior
probabilities of the target labels if the net has been trained under certain
conditions, as described in the text.

the sigmoid nonlinearity,

zl+1 = fs(W l€zl) = 1
1 + exp(W l€zl)

. (2.56)

In recent literature, rectified linear units (ReLU) has emerged as another important activation
function for the application of neural networks to ASR [95],

zl+1 = fr(W l€zl) = max(0, W l€zl). (2.57)

ReLU units have a number of advantages over sigmoids particularly for DNNs. These are
discussed in detail in Section 6.4.1.

MLPs are trained to associate a desired output vector with an input vector. Nets with
enough hidden units can, in principle, learn any mapping between the inputs and outputs.
Typically, in ASR, these nets are used to produce a mapping fmlp : x æ z from the feature
vectors at input nodes to the output activations. This mapping is gradually improved to
minimize an error criterion, V (x, c, fmlp), between the network outputs, z, and the sub-word
units or labels, c, at output nodes with multiple iterations of learning over the training
data. This is achieved by a mechanism referred to as error back propagation (EBP) that
uses a gradient descent procedure to adjust the weights of the net in order to minimize a
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Fig. 2.8 Block diagram depicting applications of NNs to HMMs based ASR.
Both hybrid NN-HMM architecture for acoustic modeling and tandem archi-
tecture for feature extraction are shown.

given error criterion. Many di�erent criteria can be used for this purpose, for example, the
minimum mean square error (MSE) between the net’s outputs and target labels,

F(W ) = 1
2

Mcÿ

i=1
(zi ≠ ci)2 = 1

2 ||z ≠ c||2 (2.58)

where Mc denotes the number of units in the output layer, which is equal to number of
speech classes or sub-word unit labels in ASR. Minimizing the MSE is tantamount to
increasing class based discrimination between feature vectors. W represents all the weights
in the network. Net weights are initialized with random values and then changed using
gradient-descent in the direction that will reduce the error in Eq. (2.58),

W l Ω W l ≠ ÷ÒW lF (2.59)

where ÷ is the learning rate for gradient descent.
MLPs and other neural net architectures have been used in a variety of ways for speech

processing. These approaches are collectively referred to as connectionist speech recognition
[52]. Two of the common approaches to apply NNs to speech are discussed in this section.
A block diagram of these system is given in Figure 2.8.

2.7.1 Hybrid modeling – NNs for Acoustic Modeling

The hybrid approaches attempt to replace GMMs by NNs for modeling the observation
probabilities, bj(x) = p(x|qt = j), in HMM based speech recognition. To this end, NNs are
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used for discriminative estimation of HMM state posterior probabilities given the acoustic
data, p(qt = j|x). The posteriors are then converted into observation probabilities by
normalizing them using state prior probabilities following Bayes Rule. This enables NNs
to be easily integrated into the HMM based approach to speech recognition, as shown in
Figure 2.8. Such a system is usually referred to as a NN-HMM system.

There are many advantages in using hybrid NN-HMM systems instead of GMM. NN-
HMM based hybrid approaches do not make any assumptions about independence of speech
features. Unlike GMM-HMM systems which are based on likelihood maximization, NN-
HMM systems directly estimate the state posteriors to maximize discrimination between
speech classes.

Traditionally, only NNs with single hidden layer have been used in ASR, primarily
because it is hard to train nets with higher number of layers. In recent years, a crucial
development in the hybrid NN-HMM ASR has been the successful training of NNs with
many hidden layers [33], [54]. These algorithms train hybrid DNN-HMM models.

2.7.2 Tandem – NNs for Feature Estimation

NNs can also be used to derive features for conventional GMM-HMM system. Such
a combination is referred to as a tandem architecture [31], [32]. Figure 2.8 shows a
block diagram of a tandem speech recognition system. Tandem approaches train neural
nets to generate speech class posteriors for a given feature vector, and transforms these
estimates as features for conventionally-trained GMM-HMM system. These approaches
have demonstrated large improvements in word recognition performance [31], [96]. The
tandem approaches thus incorporate the discriminative power of neural networks into feature
extraction, while taking advantage of the large quantity of sophisticated tools and techniques
available for GMM-HMM based ASR systems.

2.8 Task Domains and Baseline Systems

This section describes the speech corpora used to evaluate the ASR performances of the
various techniques discussed in this thesis. Two di�erent speech in noise corpora are
discussed. The first is the Aurora-2 connected digits task [90], and the second is the
Aurora-4 read newspaper task [91]. A summary of the baseline ASR systems along with
details of both of these corpora are given here.
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For all the experiments in this thesis, the baseline CDHMM ASR systems are trained
using 12-dimensional static MFCC features augmented by normalized log energy, di�erence
cepstrum, and second di�erence cepstrum resulting in 39-dimensional vectors. The ASR
performance is reported in terms of WER. These GMM-HMM systems are also used for
generating the state alignments. These alignments are then used as the target labels for
deep networks training in related experiments.

Aurora-2 is a connected digit speech in noise corpus. In most of the experiments the
Aurora-2 mixed-conditions training set is used for training [90]. Some experiments have also
used the clean training set. Both the clean and mixed-conditions training sets contain a
total of 8440 utterances by 55 male and 55 female speakers. In the mixed-conditions set, the
utterances are corrupted by adding four di�erent noise types to the clean utterances. The
baseline ASR system for the Aurora-2 set is configured using the standard configuration
specified in [90]. This corresponds to using 10 word-based CDHMMs for digits 0 to 9 with
16 states per word-model, and additional models with 3 states for silence and 1 state for
short-pause. In total, there are 180 CDHMM states each modeled by a mix of 3 Gaussians.
During the test phase, four di�erent subsets are used corresponding to uncorrupted clean
utterances and utterances corrupted with four di�erent noise types, namely subway, car,
train station and exhibition hall, at SNRs ranging from 5 to 20 dB. There are 1001 utterances
in each subset. The ASR performance obtained for the baseline system configuration agrees
with those reported elsewhere [90].

The second dataset used in this work is the Aurora-4 read newspaper speech-in-noise
corpus. This corpus is created by adding noise to the Wall Street Journal corpus [91].
Aurora-4 represents a MVCSR task with a vocabulary size of 5000 words. This work uses
the standard 16kHz mixed-conditions training set of the Aurora-4 [91]. It consists of 7138
noisy utterances from a total of 83 male and female speakers corresponding to about 14 hours
of speech. One half of the utterances in the mixed-conditions training set are recorded with
a primary Sennheiser microphone and the other half with a secondary microphone, which
enables the e�ect of transmission channel. Both halves contain a mixture of uncorrupted
clean utterances and noise corrupted utterances with the SNR levels varying from 10 to 20
dB in 6 di�erent noise conditions (babble, street tra�c, train station, car, restaurant and
airport). A bi-gram language model is used with a perplexity of 147. Context-depedent
cross-word triphone CDHMM models are used for configuring the baseline ASR system,
and each CDHMM state is modeled by a mixture of 16 Gaussian components. Silence is
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modeled by three state HMM models, and inter-word short pauses are modeled by single
state models. Similar to the training set, the test set is recorded with the primary and
secondary microphones. Each subset is further divided into seven subsets, where one subset
is clean speech data and the remaining six are obtained by randomly adding the same six
noise types as training at SNR levels ranging from 5 to 15 dB. Thus, there are a total of 14
subsets. Each subset contains 330 utterances from 8 speakers. The ASR performance for
the baseline system agrees with those given in [91].

2.9 Conclusion

This chapter has provided a review of the common background required for the rest of this
dissertation. Basic architecture and building blocks of a state of the art HMM system has
been discussed. MFCC based common feature extraction scheme has been discussed along
with the dominant GMM-HMM based ASR framework. LDA and LPP transformations
have been discussed as examples of feature space transformation techniques. Finally, the
application of NNs, shallow as well as deep, in connectionist speech recognition has been
discussed.
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Chapter 3

A Family of Discriminative Manifold
Learning Techniques

The speech production process is constrained by limited dynamics of the articulators. It has
been suggested that constrained by these limitations, the acoustic feature space is confined
to lie on low dimensional nonlinear manifold [10], [13], [51]. Therefore, a feature space
transformation technique that explicitly models and preserves the local relationships of data
along the underlying manifold should be more e�ective for speech processing. Accordingly,
multiple studies have demonstrated gains in ASR performance when using features derived
from a manifold learning based approach (See Section 1.2.3 and 2.6.2). Manifold learning
approaches such as LPP, discussed in Section 2.6.2, attempt to preserve local relationships
among data vectors in the transformed space [14], [19]. However, most these approaches are
unsupervised by nature, and only focus on preserving the manifold data similarities and fail
to discover the discriminant structure of the data.

This chapter investigates a new supervised discriminative manifold learning framework
for feature space transformation as applied to ASR. DML extends the conventional manifold
learning approaches by incorporating a discriminative component. This results in a frame-
work that attempts to maximize the separability between di�erent classes while preserving
the within-class local manifold constrained relationships of the data points. Techniques
with some notion of DML have been used in other application domains, however, no such
technique have been used for speech processing [18], [20]. The research presented here shows

0Parts of this chapter have been published in [15]–[17].
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that these algorithms provide significant improvements in ASR WER for a speech in noise
task as compared to well-known techniques such as LDA and LPP.

Assuming that the data distribution is supported on a low dimensional manifold, an
optimality criterion is formulated based on manifold preservation and inter-class separability.
In other words, the goal in DML is to estimate the parameters of a feature space mapping
or projection f : x œ RD æ y œ Rd, with d Æ D (generally d π D), that maximizes
the sub-manifold discrimination in the projected feature space while retaining the within-
sub-manifold inherent data relations. A mapping designed in this manner exploits the
underlying manifold domain geometry of the input distribution as well as the discriminative
structure of the feature space. The geometrical relationships between feature vectors along
this manifold are characterized by two partially-connected weighted graphs, namely intrinsic
and penalty graphs [15], [18]. If the feature vectors, X œ RT ◊D, are represented by the
nodes of the graphs, the intrinsic graph, Gint = {X, �int}, characterizes the within-class or
within-manifold relationships between feature vectors. The penalty graph, Gpen = {X, �pen},
characterizes the relationships between feature vectors belonging to di�erent speech classes.
Therefore, the intrinsic graph corresponds to the relationships between the feature vectors
that are to be preserved during the mapping, whereas the penalty graph refers to the
relationships that are to be discarded.

The manifold domain relationships between graph nodes or feature vectors are character-
ized by the elements of the a�nity matrices, �int and �pen. For two arbitrary nodes xu and
xv, the weight on the edge connecting them is given by the {u, v}th element, Êuv, of the
corresponding a�nity matrix. It follows that the characteristics of a graph such as structure,
connectivity and compactness are governed by these weights. These weights and the graph
based relationships can be defined in terms of many di�erent metrics. This work uses two
di�erent metrics to define the a�nity weights. This leads to two di�erent approaches of DML.
The first, locality preserving discriminant analysis (LPDA), defines a�nity between nodes
in terms of a Euclidean distance metric [16]. The second approach uses a cosine-correlation
distance metric to define the manifold domain a�nity between nodes and is referred to as
correlation preserving discriminant analysis (CPDA) [17]. The use of a cosine-correlation
based distance metric is motivated by work where cosine distance metrics have been found
to be more robust to noise corruption than those based on Euclidean distances [9], [20],
[72]. For this reason, it is expected of CPDA to demonstrate a performance advantage over
LPDA for high noise scenarios. These algorithms are described in the following sections.
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3.1 Locality Preserving Discriminant Analysis

In LPDA, the elements of the intrinsic and penalty graph weight matrices are defined in
terms of a Euclidean distance based Gaussian heat kernel as,

Êint

ij
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Y
]

[
exp

1
≠||xi≠xj ||

2

fl

2
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0 ; Otherwise
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2
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0 ; Otherwise
(3.1b)

where c(xi) refers to the class or label of vector xi. The indicator function e(xi, xj) is
true if xi lies in the near neighborhood of xj. Closeness to a vector xi can be measured
either by k-nearest neighbors (kNN) or neighbors within certain radius r. fl is the kernel
heat parameter. In the intrinsic graph, Gint, a node xi is connected to the kint nearest
neighbors belonging to the same class C(xi). Similarly, in the penalty graph, Gpen, a node
xi is connected to the kpen largest a�nity neighbors not belonging to the class c(xi).

Following Eq. (2.47), a scatter measure for a generic graph G in LPDA is defined in
terms of the feature vectors in the transformed space, y

i
= P €xi, and is given by,
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where L = D ≠ � is the Laplacian matrix of the graph G, and D is the diagonal degree
matrix whose elements correspond to the column sum of the edge-a�nity matrix �, i.e.,
Dii = q

j Êij.
In LPDA, the goal is to estimate a projection matrix, P lpda œ RD◊d, that maximizes

discrimination in the projected feature space while preserving the within-manifold local
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relationships between feature vectors. It follows that the projection should maximize the
scatter of the penalty graph Fpen(P ), while at the same time minimize the scatter of the
intrinsic graph Fint(P ). To this end, a measure of class separability and graph-preservation
is defined in terms of the ratio of Fpen(P ) to Fint(P ) as,

F(P ) = Fint(P )
Fpen(P )

= P €XLintX€P

P €XLpenX€P
, (3.4)

where the superscripts int and pen signify ‘intrinsic’ and ‘penalty’ graphs, respectively.
Thus, an optimal projection matrix is the one to minimize the expression in Eq. (3.4), i.e.,

P LP DA = arg min
P

F(P ), (3.5)

Or,
arg min

P

Ó
tr

1
(P XLpenX€P )≠1(P €XLintX€P )

2Ô
. (3.6)

Expression in 3.6 can be simplified into a generalized eigenvalue decomposition problem
given as follows,

(XLintX€)pj

lpda
= ⁄j(XLpenX€)pj

lpda
, (3.7)

where the vector pj

lpda
forms the jth column of the projection matrix P lpda œ RD◊d and

is the eigenvector associated with the jth smallest eigenvalue. For a projection on to a
d-dimensional space, the eigenvectors corresponding to the d smallest eigenvalues constitute
the optimal LPDA projection matrix, P lpda.

3.2 Correlation Preserving Discriminant Analysis

This section discusses the second DML technique proposed in this work, referred to as
correlation preserving discriminant analysis (CPDA). Unlike LPDA, where a Euclidean
distance metric is used to characterize the manifold based relationships between feature
vectors, CPDA uses a cosine-correlation based distance measure for this purpose.

The motivation for using a cosine-correlation based distance measure arises from studies
indicating that the magnitude of cepstrum vectors and hence the Euclidean distances based
acoustic models are highly susceptible to ambient noise [97]. Another way to visualize this
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could be that noise causes the data points to scatter around their original position. As a
result, the unseen test features may not obey the structure of the manifold learned from the
training data during estimation of the feature space transformation. These factors contribute
to misclassification during the feature space transformation. It has also been suggested
that the angles between cepstrum vectors are comparatively more robust to noise [98], [99].
Furthermore, in many cases of nonparametric learning, Euclidean distance-based methods
cannot clearly explain the distributional structure of the data. A more general case adapted
to the nature of data is to consider the correlation between data vectors [9], [20], [72], which
indicates the strength and direction of a relationship between two data points. This implies
a potential advantage to a feature space transformation where relationships between feature
vectors are defined using a cosine-correlation based distance measure, particularly in the
context of noise robust ASR.

The goal in CPDA is to preserve the correlational relationships between feature vectors
during the transformation while discriminating between classes of speech feature vectors.
CPDA defines a projection of the feature vectors from the source d-dimensional hypersphere
onto the target m-dimensional hypersphere. Note that this results in a nonlinear projection,
where the projected features are given by y

i
= P €xi/||P €xi||. In order to define a

correlation based measure, first the feature vectors are projected onto the surface of
a unit hypersphere. The algorithm formulation for CPDA is very similar to that for
LPDA. The feature vectors are embedded into two graphs, namely, Gint = {X, �int} and
Gpen = {X, �pen}, where the elements of the a�nity matrices are defined in terms of the
cosine-correlation between feature vectors,

Êint
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Y
]
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Variables in Eq. (3.8) follow the same nomenclature as those in Eq. (3.1) except that the
similarity or nearest neighbors are defined in a cosine-correlation sense.

Following the cosine-correlation distance metric, a scatter measure for a generic graph G
on the surface of the target hypersphere is defined as a function of the cosine correlation
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among its nodes as,
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where, for two arbitrary vectors xu and xv, fu =
Ò

x€
u

P P €xu, and fuv = x€

u
P P €xv.

Following the DML framework, the goal in CPDA is to minimize the scatter of the intrinsic
graph, Fint(P ), while at the same time maximize the scatter of the penalty graph, Fpen(P ).
Note that because of the nonlinear nature of CPDA projection, the objective criterion
cannot be formulated as the ratio of the scatter measures of the two graphs. Therefore, the
di�erence of the intrinsic and penalty graph scatters is defined as a measure of manifold
domain locality preservation and class separability,

F(P ) = Fint(P ) ≠ Fpen(P ) = 2
ÿ

i”=j
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1 ≠ fij

fifj
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· Êint≠pen

ij
, (3.10)

where Êpen≠int

ij
= Êint

ij
≠ Êpen

ij
. The optimal projection matrix is the one to minimize the

above function, i.e.,
P CP DA = arg min

P
F(P ). (3.11)

The objective criterion defined in Eq. (3.10) cannot be formulated as a generalized
eigenvalue problem instead the optimal CPDA projection matrix is obtained by using the
gradient descent rule as follows,
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where ÷ represents the gradient scaling factor, and ÒP F is the gradient of the objective
criterion defined in Eq. (3.10) with respect to P .
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The objective criterion for F(P ) corresponds to a nonlinear and non-convex error surface.
This makes the gradient descent susceptible to converge to a local optima. This could
be avoided by provided a good initialization for the parameters of the CPDA projection
matrix. To this end, an initial projection is achieved by neglecting the normalization of the
transformed features to approximate to a linear solution, i.e., by setting y

i
= P €xi. A

closed-form solution for the initialization is then achieved by solving a generalized eigenvalue
problem similar to one in the case of LPDA [16], [18],

(XLintX€)p
j

= ⁄j(XLpenX€)p
j
, (3.13)

where L is a Laplacian matrix of the corresponding graph defined in a manner similar to
that in Eq. (3.3). The superscripts int and pen signifies ‘intrinsic’ and ‘penalty’ matrices
respectively. The vector p

j
indicates the jth column of the initial transformation matrix

P . Subsequent projection matrices are obtained by performing gradient descent as per
Eq. (3.12) for a suitable number of iterations or until convergence is reached.

3.3 Experimental Study

This section describes the experimental study performed to evaluate the ASR performance
of the DML approaches. Section 3.3.1 provides details of the task domain along with a
summary of the CDHMM ASR systems used in the experiments. Section 3.3.2 presents
comparisons of ASR performance of features obtained using LPDA and CPDA to those
obtained for the more well known techniques, LDA and LPP, over a range of noise types
and signal-to-noise ratios (SNRs). Furthermore, the impact of using the cosine-correlation
based distance measure is evaluated by comparing the ASR performance of CPDA features
to that of LPDA features.

3.3.1 System Configuration

The experiments in this chapter are conducted on the Aurora-2 and Aurora-4 speech in
noise tasks described in the Section 2.8. The baseline CDHMM ASR systems are trained
using 12-dimensional static Mel-frequency cepstrum coe�cient (MFCC) features augmented
by normalized log energy, di�erence cepstrum, and second di�erence cepstrum as described
in the Section 2.8.
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Fig. 3.1 System setup for dimensionality reducing feature space transforma-
tions for ASR. Multiple consecutive MFCC vectors are concatenated in order
to capture the time evolution of speech spectrum. This concatenated vector is
then projected on to a lower dimensional space using a linear transform. The
output low-dimensional features are fed into an ASR system.

The system setup for the dimensionality reducing feature space transformations is
demonstrated in Figure 3.1. At the input, 117-dimensional super-vectors are obtained by
concatenating 9 frames of MFCCs augmented with log energy. This allows one to e�ectively
capture the time evolution of speech spectrum. The 117-dimensional vectors are then
transformed onto a 39-dimensional space by means of a projection matrix P .

For both Aurora-2 and Aurora-4 datasets, a neighborhood size of k = kint = kpen = 200
is chosen for estimating the intrinsic and penalty graph weights. Values of the Gaussian
kernel heat factor, fl, have been chosen separately for each of the three manifold learning
approaches LPP, LPDA and CPDA. The values used for fl are: 900 for LPP, 1000 for
intrinsic and 3000 for penalty graph for LPDA, and 10≠2 for the intrinsic and penalty
graphs of CPDA. These values are empirically determined using a development corpus.
Note that the same choices of the kernel scale factor and number of neighbors are used
for both datasets. Semitied Covariance transformations (STC), described in Section 2.6.3
and [92], are applied prior to recognition to account for the correlation introduced to the
transformed features by the LDA, LPP, LPDA, and CPDA projections.

3.3.2 Results for Aurora-2 Connected Digit Corpus

The ASR WER comparisons of feature obtained from the proposed LPDA and CPDA
techniques with that of features from LDA and LPP are provided in Table 3.1. The table
provides ASR results for three noise types at a range of SNRs ranging from 5dB to 20dB.
Four separate tables are displayed, one for each noise type (subway, exhibition hall and car),
and one for average over all noise types. In each of these tables, ASR WERs for five di�erent
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systems are given. The first row in the tables displays the ASR WER for the baseline system.
In this case, the MFCC features obtained from Aurora-2 mixed condition set are used for
HMM training without the application of any feature space transformation. The baseline
WERs displayed in Table 3.1 agree with those reported elsewhere [90], [100]. The results in
the second row, labeled “LDA”, correspond to feature obtained from the application of a
LDA projection matrix to concatenated MFCC feature vectors as illustrated in Figure 3.1.
Similarly, the third row, labeled “LPP”, gives the WER results for features obtained as a
result of applying a LPP transformation. The results for the technique presented in this
chapter are given in the next two rows. The fourth row “LPDA" corresponds to the ASR
WERs performance of the features obtained by applying the LPDA transformation to the
concatenated super-vectors. The final row, labeled “CPDA”, displays the ASR WERs for
feature when CPDA is used as the feature space transformation technique.

It should be noted that STC transformations are performed to minimize the impact of
the data correlation resulting from the application of the feature space transformations in
all cases except that of the baseline features. This is important because ASR performances
of all of the discussed transformations degrade if STC is not applied. For example, for the
20 dB subway noise case, the WER for LDA features increases by 40% relative if STC is not
applied [16]. This is consistent with the discussion in Section 2.6.3 and results that other
researchers have obtained when comparing the performance of feature space transformations
with and without STC [16], [94], [101], [102].
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Noise
Technique

SNR (dB)

clean 20 15 10 5

Subway

Baseline 1.76 2.99 4.00 6.21 11.89

LDA 1.82 2.25 2.93 5.29 12.32

LPP 1.66 2.33 3.50 5.71 13.26

LPDA 1.57 2.18 3.29 5.28 11.73

CPDA 1.60 2.30 2.91 4.54 11.24

Exhibition

Baseline 1.89 3.34 3.83 6.64 12.72

LDA 1.83 2.63 3.37 6.67 14.29

LPP 1.76 2.56 4.23 8.55 16.91

LPDA 1.23 2.22 3.64 6.66 13.85

CPDA 1.25 2.30 2.95 5.37 12.59

Car

Baseline 1.99 2.77 3.36 5.45 12.31

LDA 2.29 2.83 3.45 5.69 15.92

LPP 1.88 2.71 3.61 6.08 14.97

LPDA 1.52 2.30 2.77 5.19 12.73

CPDA 1.50 2.51 3.52 5.70 14.23

Average

Baseline 1.88 3.03 3.73 6.10 12.31

LDA 1.98 2.57 3.25 5.88 14.18

LPP 1.77 2.53 3.78 6.78 15.05

LPDA 1.44 2.23 3.23 5.71 12.77

CPDA 1.45 2.37 3.13 5.20 12.68

Table 3.1: Performance of DML algorithms on the Aurora-2 corpus. WERs for mixed
noise training and testing for Baseline, LDA, LPP, LPDA and CPDA are given. The best
performances are highlighted for each noise type per SNR level.
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The advantages of the proposed DML approaches, LPDA and CPDA, over conventional
techniques, LDA and LPP, are evident from the results in Table 3.1. A number of observations
can be made in this regard. First, all techniques report reductions in WERs at high SNRs
for most noise conditions. This is consistent with results reported for this task in [103].
Second, relatively smaller reductions in WERs are reported at low SNRs than at high
SNRs for all techniques. The third observation that can be made is that the proposed
DML techniques, LPDA and CPDA, perform better than the conventional techniques, LDA
and LPP, in most noise conditions. The relative improvements in WERs range from 6 to
30%. The ASR performance gains reported here support the assertion that integration of
discriminative aspects into manifold learning algorithms results in a robust and well-behaved
transformed feature space. The fourth observation is made by comparing the fourth and
the fifth rows of Table 3.1. This comparison demonstrate that CPDA provides a larger
reduction in WERs than its Euclidean counterpart LPDA at all except the highest SNR for
most noise types. This suggests that CPDA feature space transformation exhibits a higher
level of robustness against noise when compared to the techniques based on Euclidean
distance metrics such as LPDA and LDA. This is the expected advantage of CPDA that
highlights the noise robustness of the cosine-correlation based distance measure as compared
to Euclidean distance in DML. The noise type “Car” is a notable exception where all the
feature space transformation techniques are found to be less e�ective.

The statistical significance of the di�erences in WERs for selected system pairs in
Table 3.1 are reported using the Gillick and Cox matched-pairs significance test [104]. The
di�erence in WERs obtained using LPDA features and LDA features for 20 dB subway
noise is found to be statistically significant at a confidence level of 99.5%. In fact, the
performance gains in WERs reported for LPDA with respect to LDA systems are found
to be statistically significant for all conditions except for the subway and exhibition hall
noise types at 10 dB SNR. For LPDA and CPDA performance comparisons, the di�erence
in WERs are found to be statistically significant with a confidence level of 99.99% for all
conditions except for the subway and exhibition hall 20 dB SNR cases.

Another important observation that can be made from Table 3.1 is that LPP features
results in relatively high error rates compared to all other techniques for most conditions.
At first, this might appear to contradict results reported by Tang and Rose in [14]. However,
it should be noted that the results in [14] are reported on a task involving relatively clean
training and test conditions whereas the results in Table 3.1 are reported on mixed noisy
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condition training and noisy testing scenarios. For a fair comparison, the results for a clean
training and clean test scenario as an average over clean subsets from Aurora-2 are presented
in Table 3.2. Along with WERs, the table also presents relative WER improvements with
respect to the baseline. In these results, LPP shows a better performance than LDA, which
is in line with results reported in [14]. However, it should be noted that the DML algorithms,
LPDA and CPDA, report even higher performance gains than LPP. The results in Table 3.2,
in conjunction with those in Table 3.1, suggest that though the local geometry of the data
plays an important role for clean testing, the discriminative training becomes important in
the presence on noise.

3.3.3 Results for Aurora-4 Read News Corpus

The ASR WER performance of the proposed techniques on the Aurora-4 large vocabulary
task is given in Table 3.3. The recognition performance of LPDA transformed features is
compared with that of LDA transformed features and the baseline system configuration for
the Aurora-4 task.

Table 3.3 displays ASR WER performance for seven test subsets, one clean and six
noisy test scenarios. In these experiments, only recordings with the primary close-talk
Sennheiser microphone are used for both training and testing, therefore there is no e�ect
of channel. The corresponding labels are given the first column of the table. Each of
these test sets consists of utterances with SNRs ranging from 5dB to 20dB. The second
column of the table presents ASR WER performance for the baseline MFCC features when
no feature space transformation is performed. The third column, labeled “LDA”, gives
the ASR WERs for the features obtained by applying the LDA projection matrix to the

Technique Avg. WER (Rel. Improvement)
Baseline 1.07 –
LDA 0.93 (13.08)
LPP 0.90 (15.89)
LPDA 0.83 (22.42)
CPDA 0.82 (23.36)

Table 3.2: WER for clean training and clean testing on Aurora-2 speech corpus for LDA,
LPP, LPDA and CPDA. The best performances are highlighted in bold.
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concatenated MFCC feature vectors as illustrated in Figure 3.1. In a similar fashion, LPDA
transformations is applied to the concatenated MFCC features are the results are given the
fourth column, labeled “LPDA”, of the table. The last column of the table gives the relative
WER reductions obtained by using the LPDA features with respect to the LDA features.

Note that similar to the Aurora-2 experiments, STC transformations are applied to the
resultant features of both LDA and LPDA transformations in order to minimize the impact
of the data correlation.

Noise Type
Technique

Baseline LDA LPDA (rel. LDA)
Clean 15.34 15.09 13.97 (7.44)
Car 15.90 16.34 14.53 (11.08)
Babble 26.62 25.37 21.56 (15.02)
Restaurant 28.28 28.77 24.51 (14.81)
Street 31.59 29.87 27.46 (8.07)
Airport 23.65 23.65 18.96 (19.83)
Train Stn. 32.08 29.96 28.60 (4.54)
Average 24.78 24.15 21.37 (11.51)

Table 3.3: Performance of DML algorithms for mixed conditions training on the Aurora-4
corpus. WER for Baseline, LDA, and LPDA and WER improvement relative to LDA are
given. The best performances are highlighted for each noise type.

The results presented in Table 3.3 demonstrate the e�ectiveness of DML based LPDA
over conventional LDA for a LVCSR task. LPDA features are reported to show improved
WER performance over LDA across all noise types. The performance trends in Table 3.3
are similar to those in Table 3.1. The relative WER improvement of LPDA with respect to
LDA ranges from 4.54 to 19.83%. The statistical significance of the di�erences in WERs
presented in Table 3.3 are tested for the Gillick and Cox matched-pairs test [104]. It is
found that the WER improvements using LPDA features with respect to LDA features
are statistically significant at a confidence level of 99.98% or more for all conditions. The
performance of CPDA transformations is not evaluated on this task because of it’s high
computational complexity requirements. However, based on the similar performance trends
observed for the Aurora-2 and Aurora-4 corpora, one might expect reductions in WER on
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this corpus that are similar to those observed in Table 3.1 for Aurora-2.
Results presented in Table 3.3 and the corresponding observations suggest that the

relative performance gains obtained for the DML approaches generalize across task domains
and speaker populations. Furthermore, as mentioned in Section 3.3.1, the optimal values of
neighborhood sizes and kernel scale factors are empirically determined. From the presented
results, it seems that these values also generalize reasonably well across task domains. This
is important when considering the application of these techniques to new corpora. However,
while these parameters are found to be robust with respect to task domains, Chapter 5
demonstrates that they might not be robust with respect to noise conditions.

3.4 Discussion and Issues

There are several aspects of the DML algorithms that lead to their demonstrated performance
gains over the conventional approaches. The primary factor contributing toward these
gains is the fact that these techniques not only maximize class separability as is done in all
discriminant transformations, but also preserve local relationships that exist among input
data vectors. These local relationships are described by the intrinsic and penalty graphs,
Gint and Gpen. LPDA and CPDA essentially use nonlinear mapping functions for feature
extraction and, therefore, have a greater capability for exploiting geometrical relationships
inherent to the feature space than is possible for linear techniques for feature extraction.
There are a number of other factors contributing to the e�ectiveness of the proposed DML
approaches. This section highlights some of the important factors and issues a�ecting these
techniques.

3.4.1 Graph Embedding

There are two distinct advantages that graph embedding brings to the DML algorithms.
The first is that it enables a mathematical representation of the distribution and geometrical
structure of data. The structure of these graphs can be manipulated to achieve the desirable
feature space transformations. The second is that by formulating an ASR feature analysis
problem in terms of graph structures and scatters one can avoid making any assumption
about the distribution of data. This is important as common dimensionality reduction
approaches such as PCA and LDA work under the assumption of class conditional Gaussian
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distribution of the data [47]. However, the high degree of variability in speech production
results in a much more complex distribution; graph embedding avoids such assumptions.

3.4.2 Comparison to Existing Techniques

There are several general statements that can be made concerning the potential advantages
of the DML algorithms relative to the LDA like approaches. First, discriminant manifold
learning algorithms not only maximize class separability as is done in all discriminant
transformations, but also preserve local relationships and nonlinear structure inherent to
the data [1]. These local relationships are described by the intrinsic graph Gint. Second,
by virtue of the graph embedding scheme, there is no assumption on the data distribution,
therefore it is a more general form of discriminant analysis.

In comparison to LPP, DML algorithms have two distinct advantages. First, this new
framework takes advantage of the discriminant structure of the data, which LPP entirely
neglects. This is done by maximizing the scatter of the penalty graph Gpen. Second, LPP is
an unsupervised approach that attempts to preserve the manifold based structure of the
entire dataset without considering distribution of the data among various classes. This would
work well when the data vectors belonging to di�erent classes are already well separated on
the surface of the manifold. This, however, may not be true in many practical scenarios.
The presented DML algorithms make no such assumption and only preserve within-class
manifold based geometrical structures as illustrated by the a�nity weight matrices �int

and �pen.

3.4.3 Cosine-correlation distance measure

The improvements in noise robustness reported in Section 3.3 for CPDA relative to LPDA
are supported by many previous studies. Previous studies have presented evidence which
suggests that adding noise to clean speech results in reduction in the magnitude of cepstrum
feature vectors but has a relatively small e�ect on the correlation between cepstrum vectors
[97]. Cosine-correlation based distance measures have also been implemented in CDHMM
based ASR decoders and have been found to achieve lower WERs on speech in noise tasks
than the standard Euclidean based measure [98]. It has also been shown in other application
domains that cosine-correlation based distance metrics outperform Euclidean or l1-distance
metrics for classification tasks [20], [72]. Therefore, the CPDA results obtained in Section
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3.3 are consistent with previous studies.

3.4.4 Exponentially decaying weights

The graph edge-weights and the scatter measure are two other components of the DML
framework that contribute to the reported performance gains. One clear advantage of
using the exponentially decaying weights is that even within the selected nearest neighbors,
the nodes which are closely located in the source feature space are naturally given more
importance when structuring the graphs. This further enforces the notion of locality
preservation. This would not be the case if fixed binary weights were used to label whether
two nodes were connected:

Êij =

Y
]

[
1 ; e(xi, xj) = 1
0 ; e(xi, xj) = 0.

(3.14)

The importance of the weights can further be observed by analyzing the scatter measure
in Eq. (2.47) separately for the intrinsic and penalty graphs, as given in the Eq. (3.15a) and
Eq. (3.15b):

Fint(P ) = min
P

Y
]

[
ÿ

i”=j

d{yi, yj}Êint

ij

Z
^

\ (3.15a)

Fpen(P ) = max
P

Y
]

[
ÿ

i”=j

d{yi, yj}Êpen

ij

Z
^

\ (3.15b)

The intrinsic weights, Êint

ij
, also factored in Eq. (3.1a) and Eq. (3.8a), penalize the intrinsic

objective function if the vectors xi and xj are located far apart in the projected space despite
actually being in the same class. The penalty weights, Êpen

ij
, also factored in Eq. (3.1b) and

Eq. (3.8b), penalize the penalty graph objective function if the neighboring vectors xi and
xj are mapped close to one another in the projection space even though they belong to
separate classes. Furthermore, because of the exponentially decaying weights, the closer
two vectors the higher the penalty upon such mis-projection. Thus, maximizing the ratio or
di�erence of penalty graph scatter to intrinsic graph scatter ensures that if xi and xj are
close and in the same class then y

i
and y

j
will be close as well, and even if two nodes from

di�erent classes are close, their projections will be far apart.
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3.4.5 Sensitivity to Noise

The performance of all linear feature space transformation approaches is degraded when
applied to noise corrupted speech. This issue is particularly prominent for manifold learning
based approaches. This may be because the acoustic noise alters the manifold based
neighborhood distributions of the feature vectors. The shapes and sizes of the local manifold
structures are also a�ected by the choice of the scale parameter of the Gaussian kernel that
is used to map the feature data onto the manifold space. The selection of this parameter
has a crucial e�ect on the behavior of kernel and consequently on the performance of the
features [14], [21]. Since the neighborhood structure is also a�ected by the presence of
noise, there exists an increased interplay between the Gaussian kernel scale factor and ASR
performance of manifold based approaches in the presence of acoustic noise. This issue is
further investigated in Chapter 5.

3.4.6 Computational Complexity

It is well known that all manifold learning approaches to feature space transformation have
extremely high computational complexity when compared to other discriminant feature
space transformations [20], [72]. The complexity primarily arises from computing the a�nity
matrices �int and �pen. The Aurora-2 task described in Section 2.8 involves 180 states
and a training corpus of 1.4 million 117-dimensional feature vectors, and the Aurora-4 task
involves about 6 million 117-dimensional feature vectors. This is a far larger task than
those addressed in other application domains [8], [20], [72]. This represents a definite
disadvantage of the DML algorithms when applied to the generally large speech processing
tasks. A number of algorithms exist for faster but approximate nearest neighbors search
that can be used for reducing the computational complexity of these algorithms. One such
mechanism is LSH [26], [105]. LSH enables fast nearest neighbor search in high-dimensional
spaces, thus allowing for fast computation of a�nity matrices �int and �pen [25], [26].
The e�ciency and e�ectiveness of LSH, in the context of DML algorithms, is evaluated in
Chapter 4.
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3.5 Conclusion

This chapter has presented a DML framework for locality preserving feature space trans-
formations as applied to ASR. The proposed approaches attempt to preserve the within
class manifold based local relationships while at the same time maximize the separability
between classes. This is achieved by embedding the feature vectors into the intrinsic and
penalty graphs using nonlinear kernels and by preserving or penalizing the local structure of
the graphs. Two approaches have been presented which rely on two di�erent kernels based
on Euclidean and cosine-correlation distance measures. The performance of the proposed
techniques has been evaluated on two di�erent speech in noise tasks. When compared to
well known approaches such as LDA and LPP, the DML algorithms have demonstrated up to
30% reduction in WER. It has also been shown that the use of the cosine-correlation based
distance measure is more robust than the one based on Euclidean distances when speech is
corrupted by noise. Furthermore, it is shown that these performance gains generalize across
task domains and speaker populations.

Although the DML techniques provide significant gains in ASR accuracy, they su�er
from two major issues, namely sensitivity to noise and high computational complexity.
The next two chapters present detailed analysis of these two issues, along with empirical
evaluations of techniques that can be used to address these problems.
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Chapter 4

Locality Sensitive Hashing for
Manifold Learning

In the previous chapter, a discriminative manifold learning framework has been presented
that introduced class based discrimination to manifold learning techniques. Potential
applications of these techniques include feature space transformation and dimensionality
reduction in ASR. The discriminative manifold learning approaches lead to significant
improvements in ASR WERs for the Aurora-2 and Aurora-4 speech in noise tasks as
compared to well known feature space transformation techniques such as LDA [47], [49] and
LPP [14], [19]. Despite the advantages, a major criticism against the application of manifold
learning techniques to speech processing has been the very high computational complexity
of these methods [18]–[20]. The computational complexity of manifold learning techniques
originates from the need to construct nearest neighborhood based relationships represented
by the intrinsic and penalty a�nity matrices, �int and �pen, discussed in Chapter 3.

If a given training set consists of T feature vectors of dimensionality D, it would take
O(DT 2) computations in order to construct the nearest neighbors based a�nity graphs.
For large amounts of speech data, where each corpus can have up to hundreds of millions of
feature vectors each having thousands of dimensions, O(DT 2) is a formidable computational
requirement. A number of algorithms exist for faster but approximate nearest neighbors
search such as kd-trees; however, many of these algorithms reach the complexity of linear
search as the dimensionality of feature vectors increases [46].

0Parts of this chapter have been published in [25], [26].
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Fig. 4.1 The discriminative manifold learning framework with LSH based
neighborhood computations.

This chapter investigates an approximate algorithm, known as LSH [22]–[24]. LSH is
used for fast computation of the neighborhood graphs for manifold learning based feature
space transformations in ASR as illustrated in Figure 4.1. LSH is particularly well suited
for finding nearest neighbors in high-dimensional speech feature spaces. LSH creates hashed
signatures of vectors in order to distribute them into a number of discrete buckets such that
vectors close to each other are more likely to fall into the same bucket. For a given query
point, the nearest neighbors search is restricted to the data points belonging to the bucket
that the query point is hashed to. Therefore, LSH can drastically reduce the computational
time at the cost of a small probability of failing to find the absolute closest match. In this
chapter, the LSH algorithm is evaluated in the context of the DML framework introduced in
Chapter 3. The LSH scheme is incorporated within the DML framework for fast computation
of neighborhood graphs with the expectation of achieving high computational e�ciency
with minimum impact on ASR performance. LSH can be applied to other manifold learning
algorithms in a similar fashion. Experimental results are presented that show that LSH can
provide an order of magnitude speedup without significant impact on the ASR performance.
These reductions in computational complexity should enable application of manifold based
approaches to large speech datasets.

4.1 Locality Sensitive Hashing

LSH is a class of randomized algorithms that promise fast nearest neighborhood search with
a high degree of accuracy [22]–[24]. A number of di�erent implementations exist for these
schemes [106]. Two of such schemes are discussed in this work, namely exact Euclidean
LSH (E2LSH) and cosine distance based LSH (Cos-LSH). E2LSH attempts to find the
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nearest neighbors in the Euclidean space using random projections derived from a p-stable
distribution [23]. Cos-LSH on the other hand attempts to find the approximate nearest
neighbors in a cosine correlation space [107], [108]. A general description of the E2LSH
algorithm is presented in Section 4.1.1 and that of Cos-LSH is given in the Section 4.1.2.
Though meant for nearest neighbors search in Euclidean space, in this work, E2LSH is also
used for finding nearest neighbors within the cosine-correlation based CPDA. Arguments in
favor of this choice are presented in Section 4.2. The details specific to the implementation
and incorporation of the LSH schemes within LPDA and CPDA are given in Section 4.1.3.

4.1.1 Exact Euclidean LSH (E2LSH)

E2LSH attempts to hash a given set of feature vectors to a number of buckets on the real
line in a “locality sensitive" manner. If two vectors x1 and x2 are close then they should
hash to the same bucket with a high probability. If two vectors are far then they should
hash to di�erent buckets with a high probability, in other words, the probability of collision
of their hashed values should be very small. This is achieved by projecting each vector xi

onto real line by a family of hash functions H = {h : RD æ N}. The hash function used in
this work is given by,

h(x) =
E

< ā, x > +b̄

Ï

F

, (4.1)

where ā is a D-dimensional random vector whose entries are chosen from a p-stable
distribution, Ï is the width of each segment or bucket on the real-line and acts as a
quantization factor, and the bias, b̄, is a uniform random number taken from [0, Ï]. The
projection of all the vectors in this manner results in a chain or table of hash buckets each
having pointers to one or more vectors.

The hash function given in Eq. (4.1) is locality sensitive in Euclidean space because of
the following property of p-stable distributions. If āi for i œ {1 . . . D} are independently
and identically distributed random variables that follow a p-stable distribution, then their
pth -order-rooted linear combination, (ap

1 + ap

2 + . . . )1/p, also follows the same distribution.
For example, a Gaussian distribution is a 2-stable distribution. Thus, it can be inferred
that for two arbitrary feature vectors xi and xj and a random vector a, whose elements
have been independently sourced from a 2-stable distribution, the distance between their
inner-products < ā, xi > and < ā, xj > is distributed as ||xi ≠ xj||2z̄, where z̄ is a
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random variable that follows the same 2-stable distribution as the elements of a [23], [109].
This property guarantees that if two vectors xi and xj are close together in the original
space then they should have a high probability of collision or hashing to the same bucket:
Pr[h(xi) = h(xj)] Ø P1. If the two points are far apart then the collision probability should
be small: Pr[h(xi) = h(xj)] Æ P2, where P1/P2 > 1.

For optimal performance, the di�erence between P1 and P2 should be large. To this
end, k di�erent random projections are used to create a family of composite hash functions
G = {g : RD æ Nk} such that g(x) = [h1(x), . . . , hk(x)], where hi(x) œ H. Increasing
the dimensionality k of the hash functions improves the hashing discriminative power as
(P1/P2)k > P1/P2. E�ectively, a large k might result in a higher number of buckets each
having fewer points and in turn, a smaller probability that the query and the nearest
neighbors fall in the same bucket in all k projections. To reduce the impact of such
unfortunate hashing, L independent hash tables are created for which hash functions,
g1, . . . , gL, are uniformly chosen from G. This is motivated by the fact that a true nearest
neighbor will be unlikely to be unfortunate in all the projections. By choosing the optimal
values of Ï, k and L, one can find the true neighbors with an arbitrarily high probability.

Bins on real line 

Hashing 

Table l bkt 1 bkt 2 bkt nl-1 bkt nl 

h1(x) hk(x)

x � Rd

w"

D

!

Fig. 4.2 An illustration of the two-state hashing using LSH

After hashing, each data point is represented by a k-dimensional hash signature. However,
comparing these k-dimensional signatures to detect collisions may still be computationally
expensive. To this end, a second level bucket hashing is implemented to store the k-
dimensional signatures. The table size in the bucket hashing is chosen to be large enough
to ensure that di�erent signatures lead to di�erent buckets with a high probability. Such a
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bkt 1 bkt 2 bkt 3 bkt nl-1 bkt nl 
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Query point 
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Table 1 

Table L 

Candidate neighbors!
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Fig. 4.3 An illustration of approximate neighbors search using LSH

secondary hashing further reduces the number of comparisons during collision detection
and bucket lookup from O(k) to O(1). A generic schematic of LSH hashing is illustrated in
Figure 4.2.

In summary, as a result of performing LSH, each feature vector, xi, is hashed into one
of the buckets in each of the L tables. The number of buckets in di�erent tables can vary
because only non-empty buckets are stored. Ideally, two points that are close to each other
should fall in the same buckets in all the tables. Once the hash tables are created, the
search for the nearest neighbors of a given query q, proceeds as follows. First, the query q

is hashed to one of the buckets in each of the L tables. Then, candidate nearest neighbors
to q are gathered by performing the union of these buckets from all the tables as illustrated
in Figure 4.3. Finally, the nearest neighbors are searched from these candidates.

4.1.2 Cosine-correlation based LSH (Cos-LSH)

The E2LSH scheme discussed in the previous section is particularly well suited for finding
nearest neighbors in Euclidean space, such as for the LPDA or LPP transformations. The
CPDA algorithm on the other hand utilizes a cosine-correlation based distance measure as
discussed in Section 3.2. A number of LSH schemes have been proposed in the literature
that are specifically suited to a cosine-correlation space [107], [108], [110]. One such scheme
is the Cos-LSH scheme [108].
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Similar to E2LSH, the first step of Cos-LSH is to obtain a k-dimensional hash signature for
each feature vector. However, unlike E2LSH, Cos-LSH hashes each vector, xi, using a binary
representation, {0, 1}k, by projection with a unit normal random vector r œ {r1 . . . rk},

h(xi) =

Y
]

[
1 ; Èr, xiÍ Ø 0
0 ; Èr, xiÍ < 0

. (4.2)

The cosine distance is then approximated by Hamming distance in the bit vector space,

cos(xi, xj) ¥ cos(H(h(xi), h(xj))fi
k

), (4.3)

where H(·, ·) denotes Hamming distance between two bit-vectors, and k refers to the number
of random projections per vector, i.e., the dimensionality of the resultant bit vectors. Similar
to E2LSH, multiple hash tables with di�erent random projection vectors are created for
high accuracy.

4.1.3 Implementation Details

The LSH algorithms are ideally targeted at applications with a small query set that is
separate from the training set on which LSH tables are generated. In such cases, the
nearest neighbors are found by iterating over the query points to identify the target hashing
bucket and candidate neighbors of each. However, it is often necessary to search for nearest
neighbors for all the points given in the training set. For example, for the DML algorithms
described in Chapter 3, the nearest neighbors need to be calculated for all the feature
vectors in the training set in order to populate the a�nity matrices �int and �pen. This is
true for all manifold learning algorithms. In such cases, it is not feasible by both time and
computational resources to re-iterate over the entire training set in order to find the nearest
neighbors for each query.

This work has implemented a modified version of the LSH algorithms to avoid the
aforementioned issue. For each vector multiple candidate neighborhood structures are
created by calculating its pairwise distances with all vectors falling into the same bucket for
each table. If the LSH structure contains L hash tables lj, j œ {1 . . . L}, each containing
several buckets Bj

i
, i œ {1 . . . ..}, a nearest neighbor structure is created by calculating

T
B

j
i
(T

B
j
i

≠ 1)/2 (where T
B

j
i

= number of points hashed in the bucket Bj

i
) distances between
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all the points in each bucket Bj

i
. These candidate neighborhood structures are concatenated

(take union) to create two separate graphs for within-class and inter-class distances with
reference to given class labels. Final nearest neighbors are selected from these candidates.

4.2 The choice of LSH scheme

The CPDA algorithm is based on finding nearest neighbors on a unit hyperspace, where
a�nity between feature vectors is measured using an exponentially decaying cosine corre-
lation kernel, i.e., Êij = exp

1
Èxi,xjÍ≠1

fl

2
. It is trivial to show that, for two unit vectors xi

and xj and p = 2, the p-stable property of E2LSH is also valid in this desired kernel space:

||xi ≠ xj||2 = x€

i
xi + x€

j
xj ≠ 2x€

i
xj

= 1 + 1 ≠ 2x€

i
xj

= 2(1 ≠ Èxi, xjÍ).

Thus, extending the p-stability based arguments of E2LSH, it can be said that for two
unit vectors xi and xj, their projection by a vector with elements chosen from a p-stable
distribution will vary as (1≠Èxi, xjÍ)z̄. Therefore, the E2LSH hashing scheme is also locally
sensitive in a normalized cosine-correlation space.

The Cos-LSH scheme su�ers from many limitations. The scheme requires on the order
of hundreds independent tables for acceptable accuracy [108], [110]. Furthermore, the
approximation of Hamming distance between bit vectors to that of cosine distance between
the original feature vectors only holds when high dimensional bit representations (k ¥ 1000)
are used [107], [110]. The approximation approaches equality when k goes to infinity.
Though finding Hamming distance between two bit vectors is a fast and memory e�cient
task, the advantages diminish as the dimensionality of the bit vectors increases. The high
dimensionality of target bit representations also increases the cost of the random projections.
E2LSH, in comparison, is more well-behaved. The scheme is supported by the property of
p-stable distributions, and provides a high degree of accuracy with an easy to understand
dependence on the parameters (see Section 4.5) [23], [105]. The optimal range of dimensions
of hash functions varies between 1 and 5, and the number of tables is less than 10. These
claims are supported by the comparison of E2LSH and Cos-LSH in terms of their ability to
find the true nearest neighbors in the next section.
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E2LSH (Ï = 1, L = 6) Cos-LSH (L = 50)
k % Acc. Speedup k % Acc. Speedup
3 98.3 8.0 5000 65.9 2.1
4 86.9 9.7 1000 45.6 7.1
5 85.1 15.6 500 23.7 10.2
6 57.1 19.3 100 17.6 13.8
7 49.9 27.9 3 2.0 16.4

Table 4.1: Comparison of E2LSH and Cos-LSH schemes for their ability to find true nearest
neighbors.

4.2.1 Performance Comparison of E2LSH and Cos-LSH

The arguments presented in the previous section in favor of E2LSH over Cos-LSH are
supported by the performance comparisons given in Table 4.1. The table compares the two
LSH schemes for their ability to provide computational performance gains and accuracy
of finding true nearest neighbors by varying the number of dimensions of the projected
hash signatures k. The speedup and %-accuracy are given with reference to the linear
neighborhood search. For each hashing scheme, optimal value of other parameters – Ï and
L for E2LSH, and the number of permutations, L for Cos-LSH – are empirically chosen.
Further details about the Cos-LSH scheme can be found in [107], [108], [110].

For this experiment 100,000 feature vectors are randomly selected from the Aurora-2
mixed-condition noisy training set described in Section 2.8. Two separate tables are shown,
one for each LSH scheme. Note that both schemes operate in di�erent parameter spaces,
therefore a fair comparison can only be drawn with respect to the trade-o� between the
gained speedup and accuracy of finding true neighbors. It is evident from the comparisons in
Table 4.1 that E2LSH provides much better search accuracy for the same amount of speedup.
Therefore, E2LSH is used as the LSH scheme for both LPDA and CPDA transformations
in this Chapter.
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4.3 Experimental Results and Discussion

This section describes the experiments performed to evaluate the e�ectiveness of LSH for
building neighborhood graphs when incorporated within discriminative manifold learning
based LPDA and CPDA as applied to ASR feature space transformations. The e�ectiveness
is measured in terms of reduction in time required to train the projection matrices, P lpda

and P cpda, and ASR WERs obtained using the transformed features. The experiments are
performed on the Aurora-2 speech in noise task described in Section 2.8. All feature space
transformations and HMMs are trained using the mixed-noise training set, which contains
utterances corrupted by a mixture of noise conditions.

The ASR WERs are presented in Table 4.2. The table contains ASR WERs for seven
di�erent feature types for clean condition testing and noise levels ranging from 20dB to 5dB
SNR. At each SNR level, the test results are averaged over a mix of utterances corrupted by
three noise types, namely subway, exhibition hall and car. Each row of the table presents
ASR WER results obtained using a particular feature type. The first row in the table
displays the baseline ASR WER obtained when no feature space transformation is performed
over the MFCC features. The second row, labeled “LDA”, corresponds to application of
the projection matrix obtained by LDA to the concatenated super vectors. The third
row, labeled “LPP”, corresponds to the ASR WER when the LPP projection matrix is
applied to the concatenated feature vectors. The fourth row presents ASR WER results for
features obtained by LPDA transformation. The fifth row, labeled “LPDA-LSH" refers to
ASR results when LPDA transformation is obtained while using the fast E2LSH scheme
for nearest neighbors calculations. Similarly, the sixth row, labeled “CPDA” refers to the
features obtained as a results of using the CPDA transformation. The last row, labeled
“CPDA-LSH" refers to ASR results when CPDA transformation is obtained by using the fast
E2LSH scheme for nearest neighbors calculations. Note that for all but the baseline MFCC
features STC transforms are estimated to minimize the impact of the data distributions
resulting from the feature space transformations. For all feature space transformations, the
projection matrices have dimensionality of 117 ◊ 39.

A number of observations can be made when comparing ASR performances of di�erent
feature types in Table 4.2. By comparing the ASR performance of LPDA with LPDA-LSH,
it can be seen that LPDA-LSH shows almost no impact on ASR performance as compared to
LPDA in high SNR cases. However, ASR performance of these randomized algorithms seems
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to be a�ected by the presence of noise. By comparing the ASR performance of LPDA-LSH
with LDA it can be seen that LPDA-LSH produces improved ASR performance over LDA in
most noise conditions. Similarly, it can be seen by comparing the performance of CPDA with
CPDA-LSH that CPDA-LSH shows almost no impact on ASR performance as compared to
CPDA without LSH for high SNR cases. However, similar to the case of LPDA-LSH, the
performance is again a�ected by the presence of high noise. Another important observation
is that the ASR performances of the fast LPDA-LSH and CPDA-LSH methods are still
superior to that of LDA and LPP. Comparisons with LPP show that, similar to the results
reported in Section 3.1, the DML based LPDA and CPDA algorithms gives lower ASR
WERs even with LSH approximations than the unsupervised non-discriminative manifold
learning based LPP technique. It can be concluded from the results that LSH can solve the
inherent high computational complexity problem of the DML algorithms.

Features
SNR (dB)

Clean 20 15 10 5
MFCC 1.88 3.03 3.73 6.10 12.31
LDA 1.98 2.57 3.25 5.88 14.18
LPP 1.77 2.53 3.78 6.78 15.05
LPDA 1.44 2.23 3.23 5.71 12.77
LPDA-LSH 1.45 2.20 3.28 5.67 14.28
CPDA 1.57 2.37 3.13 5.20 12.69
CPDA-LSH 1.46 2.36 3.21 5.35 14.29

Table 4.2: E�ect of using LSH on ASR performance. Avg. WERs for mixed noise training
and noisy testing on Aurora-2 speech corpus for MFCC, LDA, LPP, LPDA and LPDA-LSH,
and CPDA and CPDA-LSH are given.

4.4 Computational Complexity Analysis

LSH reduces the computational requirements for neighborhood search from O(DT 2) to
O(DkTL) + O(DT 2

B
), where D is the dimensionality of feature vectors, T is total number

of feature vectors, TB is average number of points in each bucket, k is dimension of hash
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signatures g(x), and L is number of hash tables. This is a significant improvement as
typically TB is several orders of magnitude smaller than T ; for example, in this work,
compared to N = 1.4 million, TB had a value in the range of 50 ≠ 70 (Ï = 5, L = 6 and
k = 3) for LPDA and in the range of 250 ≠ 350 (Ï = 1, L = 6 and k = 3) for CPDA.

The ASR results presented in the Section 4.3 are obtained using the Aurora-2 mixed
conditions training set that contains 1.4 million vectors of dimensionality 117 extracted from
8440 utterances. The execution time for di�erent feature space transformation techniques
on the same computing system is: LDA – 90 seconds, LPP – 28 hours, LPDA without
LSH – 26 hours, LPDA-LSH – 2.5 hours, CPDA without LSH – 36 hours, and CPDA-LSH –
4 hours, respectively. Thus, LSH provides a factor of 10 speedup to LPDA and a factor
9 speedup to CPDA. This is remarkable speedup that should enable the application of
manifold learning based feature space transformation techniques to generally large speech
databases.

4.5 LSH Parameterization vs Performance

The choice of the parameters of a LSH scheme can a�ect the computational performance as
well as ASR word recognition accuracy. This section discusses some of these trade-o�s in
the context of the LPDA algorithm.

There are three main parameters that a�ect the performance of LSH, the quantization
factor, Ï, the number of projections or dimensions of the hash signatures, k, and the number
of tables, L. The parameter Ï controls the width of the buckets and hence the probability
of collision for any two points. A large Ï results in large buckets, thus an increase in the
false collisions and computational complexity. It has been observed in other domains that a
small positive value of Ï su�ces to achieve optimal LSH performance and larger values do
not have a huge impact on accuracy [24]. In this work, Ï = 5 is found to provide good LSH
performance for the LPDA algorithm, however, Ï = 1 is chosen for CPDA. This di�erence
in choice of parameter Ï for LPDA and CPDA is primarily due to the e�ect of normalizing
the feature vectors in CPDA.

Increasing the dimensionality of the hash signatures, k, improves the hashing discrim-
inative power, hence e�ectively decreasing the probability of collision of two points. In
this work, values of k are searched in the range of 1 to 10. The dimensionality of the hash
signatures represents a trade-o� between the time spent in computing hash values and time
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System k WER Clean (%-Rel.) Training Time (Hours) Speed-up
Baseline – 1.88 (00.00) – –

LDA – 1.98 (-05.32) – –
LPP – 1.77 (05.85) 28 –

LPDA – 1.41 (25.00) 26 1
LPDA-LSH 3 1.45 (22.87) 2.5 10.40
LPDA-LSH 4 1.66 (11.70) 0.92 28.26
LPDA-LSH 5 1.76 (06.38) 0.82 31.71

Table 4.3: LSH Parameterization vs. Performance for the Aurora-2 mixed condition
training set and clean testing.

SNR Level
Clean 20 dB 15 dB 10 dB 5 dB
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LPDA-LSH k=4; Training Time = 0.92 Hours
LPDA-LSH k=5; Training Time = 0.82 Hours
LPDA-LSH k=10; Training Time = 0.78 Hours

Fig. 4.4 Impact of varying the dimension, k, of hash functions on ASR
performance and LPDA training time. For these experiments Ï = 5 and L = 6
were fixed.
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spent in pruning candidate neighbors to find the nearest neighbors from a bucket. This
behavior is evident in the results presented in Table 4.3 and Figure 4.4. The table provides
ASR WER performance of resultant LPDA features for di�erent choices of k as evaluated
on the clean test subsets of the Subway, Car, and Exhibition noise types in the Aurora-2
corpus when mixed-conditions training is used. For comparison, the table also contains
ASR WER performance for the LDA and LPP features. Figure 4.4 provides comparisons for
a range of SNR values and choice of the parameter k. The ASR WERs are reported for the
mixed-conditions training set and are obtained as an average over utterances corrupted by
the Subway, Car, and Exhibition noise types in the Aurora-2 task. See Section 2.8 for more
details about the Aurora-2 task. These results show the a�ect of choice of k as a trade-o�
between the time required for training the LPDA projection matrix and ASR performance.
The number of keys, k, controls the discrimination power of the hashing and the accuracy
of finding true nearest neighbors; a higher value of k leads to more buckets with fewer
points per bucket and lower computational complexity for searching for neighbors within
each bucket. Therefore, a higher k might reduce the accuracy of finding true neighbors.
It can be observed from the table that the best performance is observed for k = 3 with
significant reduction in training time. Using value of k < 3 did not provide worthwhile gains
in computational complexity. Another observation from the Figure 4.4 is that a low-accurate
hashing (higher k) severely a�ects the ASR performance of the manifold learning technique.
Therefore, it is important for these methods to have a close to truth representation of near
neighbors.
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Fig. 4.5 Impact of varying the number of tables, L, of LSH on ASR perfor-
mance. For these experiments Ï = 5 and k = 3 were fixed.
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Increasing L should increase the probability of finding accurate nearest neighbors,
however, computational complexity also increases. This is because more tables mean more
projections to perform and more buckets to scan. In this work, a suitable value of L is
searched in the range of 1 to 6. Figure 4.5 presents a graph of average ASR WER versus
the number of tables for the Aurora-2 mixed-conditions set described in Section 2.8 with
reference to the WER from LPDA without LSH. For these experiments, the mixed conditions
training set is used and the ASR WER average over all SNR levels of the Subway, Car and
Exhibition noise types are provided. The training time of LPDA-LSH increases from 0.6
to 2.5 hours with the increase in L. L = 6 provides near-optimal ASR performance, and
increasing L further does not lead to significant gains in ASR performance. The speedup
decreases with increases in L.

4.6 Conclusion

This chapter has investigated the application of a fast approximate nearest neighbor
search algorithm, known as LSH, in conjunction to the DML algorithms. LSH is used for
populating the a�nity matrices in manifold learning based feature space transformations.
The discriminative manifold learning based LPDA and CPDA algorithms are used as
examples of manifold learning techniques. ASR WER and execution times are reported
for the algorithms with and without using LSH. Performance comparisons are also made
between these approaches and the more well-known LDA and LPP. It is demonstrated that
LSH provides a speedup for 10 for LPDA and 9 for CPDA with no to minimal impact on
their ASR WER performance.

LPDA uses a Euclidean distance based measure to characterize the manifold domain
relationships among feature vectors, whereas CPDA uses a cosine-correlation based distance
measure. For the CPDA algorithm, a cosine adaptation of E2LSH scheme is chosen for
hashing. The E2LSH scheme is compared to another commonly used cosine distance based
LSH scheme, Cos-LSH, in terms of the trade-o� between computational gains and nearest
neighbor search accuracy. The results have shown that the E2LSH scheme provides better
search accuracy for the same amount of speed up.

Finally, the results presented in this chapter can also be used to analyze the sensitivity
of manifold learning based methods to thefinding true near neighbors. It is shown that a less
accurate near neighbors estimation can lead to significant degradation in ASR performance.
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Chapter 5

Noise aware Manifold Learning

The discriminative manifold learning approaches presented in Chapter 3 has shown significant
improvements in ASR WERs as compared to well known feature space transformation
techniques such as LDA [47], [49] and LPP [14], [19]. However, it is evident from the
results presented in Tables 3.1 and 3.3 that the performance of all linear feature space
transformation approaches is degraded when applied to noise corrupted speech. This chapter
addresses this issue for manifold learning based feature space transformation approaches in
particular.

Manifold learning based approaches work under the assumption that high dimensional
data can be considered as a set of geometrically related points residing on the surface of a
lower dimensional manifold. The aim is then to preserve non-linear relationships along this
manifold in the transformed feature space. However, additive noise in the linear spectrum
domain alters the norm of cepstrum domain feature vectors [97]. The unseen test features
may not obey the structure of the manifold learned from the training data resulting in
performance degradation for noise corrupted speech. Therefore, the interaction between
acoustic noise conditions and the structure of local neighborhoods makes manifold learning
based methods highly sensitive to noise. To support this argument, empirical evidence
demonstrating the impact of noise on manifold learning techniques and the importance of
environmental compensation for such techniques is presented in Section 5.1.

As discussed in Chapter 3, a Gaussian kernel is used to map the speech feature vectors
onto the manifold space. The shape and size of the local manifold structures are a�ected by

0Parts of this chapter have been published in [15], [27].
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the choice of the kernel scale parameter. The selection of this parameter has a crucial e�ect
on the behavior of kernel, and consequently the performance of the features [21]. Since the
neighborhood structure is also a�ected by the presence of noise, there exists a significant
interplay between the Gaussian kernel scale factor and acoustic noise. The analysis of
the e�ect of noise level on the optimal choice of Gaussian kernel scale factor for manifold
learning techniques is presented in Section 5.2.

Section 5.3 proposes a heuristic NaML method to address the interaction between
acoustic noise conditions and the structure of local neighborhoods. NaML is described
as an approach for exploiting estimated background characteristics to define the size of
the local neighborhoods used for LPDA feature space transformations. It is shown that
NaML significantly reduces the speech recognition WER in a noisy speech recognition task
over LPDA, particularly at low signal-to-noise ratios. In this chapter, the discriminative
manifold learning LPDA is chosen as an example manifold learning technique primarily
because of the good performance obtained using LPDA as presented in Chapter 3 and [16].
However, the NaML framework can be extended to any manifold learning algorithm.

5.1 Characterizing the impact of noise on manifold learning

This section analyzes the impact of mismatched environmental conditions on the dis-
criminative manifold learning based LPDA approach for estimating ASR feature space
transformations. It is argued in Chapter 3 that manifold learning techniques benefit from
the assumption that there is a structural relationship amongst data vectors which can be
maintained by preserving the local relationships among the transformed data vectors. This
suggests that if the presence of noise distorts these local relationships, the e�ectiveness of
these techniques will be a�ected. In this section, this phenomenon is examined under highly
mismatched acoustic conditions by estimating LPDA transforms and training CDHMM
models under clean conditions and evaluating ASR WER under a number of noisy conditions.

Two set of experiments are carried out to test the hypothesis that environmental
mismatch may a�ect manifold learning techniques to a greater extent than other feature
types such as unaltered MFCC features. First, the e�ect of noise on ASR WER is evaluated
when both MFCC features and LPDA features are applied to the Aurora-2 speech in noise
task described in Section 2.8. It is observed that the WER is far higher for the LPDA
transformed features than that observed when no feature space transformation is performed.
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Fig. 5.1 Architecture of the system used to analyze the impact of noise on
manifold learning based algorithms.

Second, the e�ects of noise are measured again after adapting the HMM covariance matrices
to reduce the acoustic model mismatch with respect to the noisy test data. This procedure
is illustrated in Figure 5.1. Interestingly, it is found that, after transforming the model
parameters, the gain in ASR performance observed for the LPDA transformed features is
significantly higher than that for the MFCC features.

The experimental results supporting these observations are displayed in Table 5.1. The
table contains ASR WERs for test conditions corresponding to a range of SNRs in the
subway noise condition. The two major rows in Table 5.1 represent the two di�erent types of
features being evaluated, namely untransformed MFCC features and the LPDA transformed
features. For each feature set, the percent WER is displayed with respect to SNR level
when no acoustic adaptation is performed, referred to in Table 5.1 as “None”, and when
unsupervised regression based covariance adaptation is performed on the HMM model
during recognition, referred to in the table as “Cov.”.

It is clear from observing the “None” labeled rows of Table 5.1 that there is a significant
increase in WER for both the MFCC and LPDA transformed features as the testing
conditions become increasingly mismatched with respect to the clean training conditions.
However, it is also clear that the increase in WER is far greater for the case of the LPDA
features. This suggests that imposing the structural constraints associated with manifold
learning is actually increasing the confusability of the data when corrupted by additive
noise.

It is well known that the presence of noise introduces distortions in the covariance
structure of the data [111]. These distortions result in changes in the probability densities
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of noisy speech features resulting in a mismatch with respect to model distributions trained
under clean conditions. For the particular case of manifold learning, it is also true that the
unseen test features may not obey the structure of the manifold learned from clean training
features during LPDA estimation. This results in a higher degradation in ASR performance
when manifold learning based feature space transformation techniques are used.

The observations concerning the impact of noise on the covariance of the data and
the impact of the mismatched covariance on the assumed underlying manifold structure
of the data suggests that some form of environmental compensation should reduce the
e�ects of noise on the LPDA transformed features. The rows of Table 5.1 labeled as
“Cov.” display the WERs obtained when applying unsupervised regression based covariance
adaptation to transforming Gaussian mixture covariance matrices in the CDHMM model.
A multiple pass adaptation scenario is used where maximum likelihood linear regression
(MLLR) based covariance transforms are estimated from all test utterances corresponding
to a given noise level [112]. While this scenario is not consistent with the one used to obtain
the “no adaptation” results shown in Table 5.1, it serves to demonstrate the added impact
mismatched conditions have on the LPDA manifold learning approach.

Features Adapt. 20 dB 15 dB 10 dB 5 dB

MFCC
None 2.52 6.97 24.01 54.19
Cov. 2.67 5.59 16.49 44.83

LPDA
None 7.80 18.94 40.71 61.20
Cov. 1.96 4.30 13.75 39.89

Table 5.1: ASR %-WER for clean training and subway noise testing on the Aurora-2 speech
corpus for MFCC and LPDA features with and without environmental compensation.

It is clear from the “Cov." results in the table that WERs for both LPDA transformed
and untransformed features are significantly reduced at almost all SNR levels. Part of this
reduction in both cases is due to the fact that all utterances from a given SNR level are used
to estimate the regression based adaptation matrix. This is an expected and well known
phenomenon. However, the WER reductions for the case of LPDA transformed features are
remarkable. In fact, while LPDA WERs are considerably higher than the WERs for the
untransformed features with uncompensated models, the LPDA WERs are considerably
lower than those obtained for the untransformed features when covariance normalization is
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applied.
It can be concluded from the results presented in Table 5.1 that the direct impact of

noise on the DML techniques described in Chapter 3 occurs through distortions in the local
neighborhoods for the manifold learning algorithm. These local neighborhoods are defined
by the a�nity matrices and the associated Gaussian kernels. The NaML approach presented
in Section 5.3 directly deals with this issues by considering the relationship between the
size of the Gaussian kernels and the SNR levels.

5.2 Role of the Gaussian kernel scale factor

An important issue with the manifold learning approaches is the choice of the shape and
size of the neighborhoods. Typically, a nonlinear kernel is used to map the feature data
onto the manifold space (see Section 2.6.2 and Chapter 3). The geometrical compactness of
this mapping is determined by the kernel scale parameter, fl, as described in Eq. (3.1) and
Eq. (3.8). The selection of this parameter has a crucial e�ect on the behavior of the kernel
and consequently on the performance of the features [21], [113]. Most often this parameter
is heuristically tuned to the given dataset. Using a value of the scale parameter which is too
large would tend to flatten the Gaussian kernel leading to a graph where all data pairs are
considered equally important. On the other hand, using a value which is too small would
result in a graph which lacks su�cient smoothing of the manifold, thus resulting in a kernel
which is overly sensitive to noise. These observation are supported by experimental results
presented in this section. For these experiments a multi-noise mixed training dataset is
used to minimize the environmental mismatch between the training and testing conditions.

Table 5.2 demonstrates the dependence of LPDA approach on fl values. ASR performance
results using multi-noise mixed CDHMM training on the LPDA transformed features
corresponding to two di�erent values of fl, fl1 = 800, fl2 = 1000, are given for three di�erent
noise types (Sub.=subway, Exh.=exhibition hall, and car). The next five columns of the
table display the ASR %-WER performance for five di�erent SNR levels (clean, 20 dB, 15
dB, 10 dB, and 5 dB). In all these cases, a STC transform is estimated to minimize the
impact of the data correlations resulting from the LPDA projections.

It can be observed from the results in Table 5.2 that fl = 800 gives better performance in
case of clean speech and high SNR compared to the case when fl = 1000 is used. However,
using a kernel with fl = 1000 produces better performance for low SNR conditions. This
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Noise fl Clean 20 dB 15 dB 10 dB 5 dB

Sub.
800 1.69 2.27 3.65 6.02 13.11
1000 1.83 2.43 3.29 5.25 11.82

Exh.
800 1.08 2.56 3.61 6.79 16.17
1000 1.38 2.56 3.72 6.08 14.04

Car
800 1.73 2.74 3.40 6.83 15.99
1000 2.19 2.27 3.02 5.04 15.33

Table 5.2: Comparison of LPDA ASR performance in terms of %-WER for two di�erent
values of fl, viz., fl1 = 800, fl2 = 1000. The best of the two cases have been highlighted in
bold.

trend is visible for all noise types. These results establishes that a fatter kernel gives better
performance with noise, while keeping mind that a too high fl will result in loss of non-linear
manifold based relationships.

To conclude, an important finding that can be derived form these results is that the
optimal value of the scale parameter is heavily influenced by the level of noise corruption in
speech. Such dependence of the optimal choice of kernel scale factor on SNR level can be
handled by multiple scale factors, each specific to a noise condition. An automatic scheme
to achieve this is discussed next.

5.3 Noise aware Manifold Learning (NaML)

As a demonstration of how the relationship between fl and environmental noise can be
exploited, an approach for noise-aware manifold learning (NaML) is investigated. As an
example of NaML, noise-aware LPDA (N-LPDA) transformations in ASR is implemented.
The approach is carried out in three steps as shown in Figure 5.2. First, an ensemble of
projection matrices are trained based on a range of values of fl. Second, a heuristic technique
is used to identify a value of fl – and hence a specific LPDA projection – that maximizes
ASR performance for a given SNR level. Note that an intermediate step of estimating the
SNR for each speech utterance is involved here. Recent research has produced a number of
algorithms for blind estimation of SNR1 for noisy speech data [114], [115]. However, in the

1It is called blind estimation if corresponding clean speech data is not available.
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Fig. 5.2 A schematic for the N-LPDA system

absence of the corresponding clean data, it is often hard to accurately estimate the SNR
of a given speech waveform. In fact, di�erent techniques can provide very di�erent SNR
estimates for the same noisy utterance. In this thesis, a hybrid SNR estimation algorithm2

based on [114] and [115] is used to automatically estimate the SNRs for the noise corrupted
utterances in the Aurora-2 corpus. The hybrid approach has been able to correctly estimate
the SNR levels for 85% of the utterances in Aurora-2 test set3. Finally, separate CDHMM
models are trained from the features obtained by using this ensemble of projection matrices.
During recognition, SNR is estimated for each test utterance, feature space transformation
is performed using the projection matrix associated with the corresponding SNR level, and
finally the corresponding CDHMM model is used for recognition.

In this work, an ensemble of LPDA transformations are trained using a�n-
ity and penalty matrices relying on five di�erent sets of kernel scale parameters:
{800, 800|900, 900, 1000, 1000|3000}. These values are empirically chosen based on ASR
performance obtained on a development set across a range of SNRs. Here, the values in the
format ‘a|b’ refer to the two di�erent scaling parameters used for the intrinsic and penalty
graph kernels, respectively. The results of this approach are shown in Table 5.3 for the
various noise conditions described earlier. For each noise type, ASR %-WERs are compared
for LPDA and N-LPDA. Note that in the case of LPDA the configuration corresponding to
fl = 1000|3000 as discussed in Table 3.1 is used. The last column in the table lists ASR
WER averaged over all listed SNR levels for each noise condition. An additional fourth
table, labeled “Avg.", is shown with ASR WER for LPDA and N-LPDA averaged across

2Final SNR = 0.6*NIST [115] + 0.4*WADA [114]
3For the Aurora-2 test set, the actual SNR levels of the speech data is known. However, in a real-world

scenario, SNR of a noisy speech utterance would not be known. Therefore, in this work, a blind estimate of
SNR is used to choose the appropriate projection matrix.
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Noise LPDA (fl)
SNR (dB)

Clean 20 15 10 5

Sub.
800 1.69 2.27 3.65 6.02 13.11
1000 1.83 2.43 3.29 5.25 11.82
1000|3000 1.57 2.18 3.29 5.28 11.73
N-LPDA 1.44 2.18 3.25 5.25 11.44

Exh.
800 1.08 2.56 3.61 6.79 16.17
1000 1.38 2.56 3.72 6.08 14.04
1000|3000 1.23 2.22 3.64 6.66 13.85
N-LPDA 1.14 2.28 3.36 6.08 13.85

Car
800 1.73 2.74 3.40 6.83 15.99
1000 2.19 2.27 3.02 5.04 15.33
1000|3000 1.52 2.30 2.77 5.19 12.73
N-LPDA 1.67 2.36 2.92 5.04 12.60

Table 5.3: ASR %-WERs for mixed noise training and testing on the Aurora-2 speech
corpus for N-LPDA for di�erent heat-kernel values.

the di�erent noise types.
It is apparent from the results in Table 5.3 that N-LPDA produces slightly better

average ASR performance for most conditions as compared to any single fl choice. This
result confirms the dependence of the kernel scale factor on environmental conditions. It also
suggests that choosing an optimal value of fl by selecting from an ensemble of alternative
transforms may be a plausible approach for reducing the impact of this dependence. Though,
the suggested open-loop scheme might not be the most parsimonious approach in terms of
computational resources, the homogeneous performance gain in terms of ASR WER across
all noise conditions justifies the increase in computational complexity. Considering the
di�culties with an open-loop approach, it might be worthwhile to investigate the use of a
noise removal technique with manifold learning based approaches.
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Noise Feat.
SNR (dB)

Clean 20 15 10 5

Sub.
MFCC 1.76 2.99 4.0 6.21 11.89
LDA 1.82 2.25 2.93 5.29 12.32
LPP 1.66 2.33 3.50 5.71 13.26
N-LPDA 1.44 2.18 3.25 5.25 11.44

Exh.
MFCC 1.89 3.34 3.83 6.64 12.72
LDA 1.83 2.63 3.37 6.67 14.29
LPP 1.76 2.56 4.23 8.55 16.91
N-LPDA 1.14 2.38 3.36 6.08 13.85

Car
MFCC 1.99 2.77 3.36 5.45 12.31
LDA 2.29 2.83 3.45 5.69 15.92
LPP 1.88 2.71 3.61 6.08 14.97
N-LPDA 1.67 2.36 2.92 5.04 12.60

Table 5.4: ASR %-WER for mixed noise training and testing on Aurora-2 speech corpus
for LDA, LPP and N-LPDA. The best performance has been highlighted for each noise
condition.
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5.4 Conclusion

This chapter has investigated the e�ect of acoustic noise conditions on manifold learning
approaches for feature space transformations in CDHMM based ASR. It is found that the
structural constraints associated with manifold learning approaches result in transformed fea-
tures that are more sensitive to mismatch in acoustic conditions than untransformed MFCC
features. It has also been shown that environment dependent performance degradation can
be traced to the choice of the size of the Gaussian kernel scale factor used for defining local
a�nity matrices in manifold learning. These observations led to a multi-model approach for
improving the noise robustness of manifold learning based feature space transformations,
referred to here as NaML. The NaML approach is shown to provide reduced WER across a
range of acoustic conditions with respect to the LPDA transformation implemented without
requiring explicit knowledge of background acoustic conditions.

The work in this chapter has only focused on the e�ect of additive background noise on
the speech manifold. It has, however, not analyzed the impact of channel distortion on the
manifold. It would be interesting to extend the studies presented in this chapter to the case
of channel distortion. Furthermore, it would also be interesting to see the e�ect of channel
distortion on manifold when some channel distortion removal technique, such as cepstrum
mean normalization (CMN), is applied.
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Chapter 6

Manifold Regularized Deep Neural
Networks

This chapter presents an approach for applying manifold based constraints to the problem
of regularizing training algorithms for DNN based acoustic models in ASR. The goal of
this research is to develop methods that can enhance the ability of DNNs to provide
e�cient and distributed model representations by using manifold learning to impose local
structural constraints. To this end, the optimization criterion in DNN training is redefined
to incorporate the DML based constraints as discussed in Chapter 3 for emphasizing
local neighborhood relationships among acoustic feature vectors. This approach involves
redefining. The resultant training mechanism is referred to here as MRDNN training and is
described in Section 6.2. ASR performance of the proposed technique is evaluated on the
Aurora-2 and Aurora-4 speech-in-noise corpora discussed in Section 2.8.

This work is primarily motivated by two set of studies. The first is studies have discussed
the impact of the local structure of the feature space on EBP optimization, including the
features provided to the input of the DNN as well as features produced at the output of
hidden layers of the DNN. It has been suggested that input features with strong local
structure lead to improved learning for DNNs [57]. The second is the studies suggesting
that deep auto-encoder networks perform well because they are able to implicitly learn a
low-dimensional manifold based representation of the training data [58], [65]. Considering
that manifold based constraints emphasize the underlying local structure of speech features,

0Parts of this chapter have been published in [28], [29].
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manifold learning in DNN framework has the potential to address several important learning
issues.

Previous work on optimizing deep network training includes approaches for pre-training
of network parameters such as restricted Boltzmann machine (RBM) based generative
pre-training [54], [60], [61], layer-by-layer discriminative pre-training [64], and stacked
auto-encoder based pre-training [65], [66]. Other techniques, like dropout with the use of
ReLUs as nonlinear elements in place of sigmoid units in the hidden layers of the network
are also thought to have the e�ect of regularization on DNN training [95], [116].

Similar to the shallow NNs discussed in Section 2.7.1, DNNs have been applied to
ASR tasks in both tandem and hybrid configurations [96]. In tandem configurations,
DNNs are usually trained with a low dimensional bottleneck hidden layer [30], and the
activations obtained from the bottleneck layer are used as input features to a CDHMM
based ASR system [31], [32]. In hybrid configuration, DNNs are used for discriminative
estimation of HMM state posterior probabilities. This is referred to as a hybrid DNN/HMM
configuration [33], [55], [56], [117]. These state posteriors are converted into HMM state
observation probabilities by normalizing the posteriors using prior state probabilities [55].
The manifold regularization techniques described in this chapter are applied to estimate
parameters for a tandem DNN with a low-dimensional bottleneck hidden layer. The
discriminative features obtained from the bottleneck layer are input to a GMM-HMM
speech recognizer [31], [96]. One such implementation is illustrated in Fig. 6.1, where
the concatenated feature vectors are fed into a four layers deep network, and the outputs
are used as features for a GMM-HMM ASR system. Because of the diagonal covariance
requirements of HMM-GMM ASR system, it is also helpful to orthogonalize the bottleneck
features using PCA.

An important impact of the proposed technique is the well-behaved internal feature
representations associated with MRDNN trained networks. It is observed that the modified
objective criterion results in a feature space in the internal network layers such that the
local neighborhood relationships between feature vectors are preserved. That is, if two
input vectors, xi and xj, lie within the same local neighborhood in the input space, then
their corresponding mappings, zi and zj, in the internal layers will also be neighbors. This
property can be characterized by means of an objective measure referred to as the contraction
ratio [70], which describes the relationship between the sizes of the local neighborhoods
in the input and the mapped feature spaces. The performance of MRDNN training in
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Fig. 6.1 An example of a bottleneck DNN based feature extractor in tandem
configuration. The network takes multiple concatenated frames of speech
features, si, at the input and provides phonetic probabilities at the output.
After training, the outputs from the bottleneck layer, zi, are used as features
in a GMM-HMM speech recognizer.
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producing mappings that preserve these local neighborhood relationships is presented in
terms of the measured contraction ratio in Section 6.2.1. In addition, it is discussed in
Section 6.2.2 that the inclusion of manifold based locality preservation constraints in the
objective criterion leads to a robust gradient estimation during EBP training, which helps
in reducing the impact of rapid changes on the classification function.

6.1 Deep Neural Networks

A DNN is simply a feed-forward artificial neural network that has multiple hidden layers
between the input and output layers. The basic concepts of a deep network are sames as
those discussed for the shallow NNs in Section 2.7. It has been long believed in the machine
learning community that deep architectures are well suited for complex tasks that can be
coded into a layered architecture involving several sub-tasks. The ASR process is a natural
fit to this model.

Typically, a deep network produces a mapping fdnn : x æ z from the inputs, xi œ XT

1 ,
to the output activations, zi, i = 1 . . . T . This is achieved by finding an optimal set of
weights, W , to minimize a global error or loss measure, V (xi, ci, fdnn), defined between the
outputs of the network and the targets, ci, i = 1 . . . T . In this work, L2-norm regularized
DNNs are used as baseline DNN models. The objective criterion for such a model is defined
as

F(W ) = 1
T

Tÿ

i=1
V (xi, ci, fdnn) + “1||W ||2, (6.1)

where the second term refers to the L2-norm regularization applied to the weights of the
network, and “1 is the regularization coe�cient that controls the relative contributions of
the two terms.

The weights of the network are updated for several epochs over the training set using
mini-batch gradient descent based EBP,

wl
m,n Ω≠ wl

m,n + ÷Òwl
m,n

F(W ), (6.2)

where wl

m,n
refers to the weight on the input to the nth unit in the lth layer of the network

from the mth unit in the preceding layer. The parameter ÷ corresponds to the gradient
learning rate. The gradient of the global error with respect to wl

m,n
is given as

Òwl
m,n

F(W ) = ≠�l
m,n ≠ 2“1wl

m,n, (6.3)
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where �l

m,n
is the error signal in the lth layer and its form depends on both the error

function and the activation function. Typically, a soft-max nonlinearity is used at the
output layer along with the cross-entropy objective criterion. Assuming that the input to
pth unit in the final layer is calculated as netL

p
= q

n wL

n,p
zL≠1

p
, the error signal for this case

is given as �L

n,p
= (zp ≠ tp)zL≠1

n
[118], [119].

6.2 Manifold Regularized Deep Neural Networks

Manifold regularization is a data dependent regularization framework. An introduction
to manifold regularization with the examples of LapRLS and LapSVM is provided in
Section 2.6.2.2. There has been several recent e�orts to apply some form of manifold based
learning to a variety of machine learning tasks. Authors in [10] have applied the techniques
presented in manifold regularization framework to feature space transformations for a phone
recognition task.

The graph manifold regularization framework has also been applied to neural networks
to some extent. In [120], authors have investigated manifold regularization in single hidden
layer multilayer perceptrons for a phone classification task. Various aspects of manifold
learning based semi-supervised embedding have been applied to deep learning for a hand-
written character recognition task in [121]. Manifold regularized shallow neural networks
have been used for image classification for remote sensing in [122]. In other somewhat
related work, deep recurrent neural networks based methods have been explored to preserve
temporal correlation structure in the speech sequence data [123].

While the manifold based regularization approach presented in this chapter is related to
the e�orts mentioned earlier, the methods presented here rely on the DML framework. This
choice is motivated by the results discussed in Chapter 3 that demonstrate the e�ectiveness of
DML for maintaining separability between classes of speech feature vectors while preserving
the local manifold based relationships when applied to feature space transformations in
ASR. The work presented in this chapter is also the first to apply this class of techniques to
training deep neural networks for ASR.

The algorithm formulation for manifold regularized training of deep networks is provided
in Section 6.2.1. The architecture and training procedure of MRDNNs is discussed in Section
6.2.2. The proposed training procedure emphasizes local relationships among speech feature
vectors along a low dimensional manifold while optimizing network parameters. To support
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this claim, empirical evidence is provided in Section 6.2.3 that a network trained with
manifold constraints has a higher capability of preserving the local relationships between
the feature vectors than one trained without these constraints.

6.2.1 Algorithm Formulation

This work incorporates locality and geometrical relationships preserving manifold constraints
as a regularization term in the objective criterion of a deep network. These constraints
are derived from a graph characterizing the underlying manifold of speech feature vectors
in the input space. The objective criterion for a MRDNN network producing a mapping
fmrdnn : x æ z is given as follows,

F(W ; Z) =
Tÿ

i=1

Y
]

[
1
T

V (xi, ci, fmrdnn) + “1||W ||2

+“2
1
k2

kÿ

j=1
||zi ≠ zj ||2Êint

ij

Z
^

\ ,

(6.4)

where V (xi, ci, fmrdnn) is the loss between a target vector ci and output vector zi given an
input vector xi; V(·) is taken to be the cross-entropy loss in this work. W is the matrix
representing the weights of the network. The second term in Eq. (6.4) is the L2-norm
regularization penalty on the network weights; this helps in maintaining smoothness for
the assumed continuity of the source space. The e�ect of this regularizer is controlled by
the multiplier “1. The third term in Eq. (6.4) represents manifold learning based locality
preservation constraints as defined in Chapter 3. Note that only the constraints modeled
by the intrinsic graph, Gint = {X, �int}, are included, and the constraints modeled by the
penalty graph, Gpen = {X, �pen}, are ignored. The reasoning behind this choice is discussed
in Section 6.4.3. The scalar k denotes the number of nearest neighbors connected to each
feature vector, and Êint

ij
refers to the weights on the edges of the intrinsic graph as defined

in Eq. (3.1a). The relative importance of the mapping along the manifold is controlled by
the regularization coe�cient “2.

This framework assumes that the data distribution is supported on a low dimensional
manifold and corresponds to a data-dependent regularization that exploits the underlying
manifold domain geometry of the input distribution. By imposing manifold based locality
preserving constraints on the network outputs in Eq. (6.4), this procedure encourages a
mapping where relationships along the manifold are preserved and di�erent speech classes
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are well separated. The manifold regularization term penalizes the objective criterion for
vectors that belong to the same neighborhood in the input space but have become separated
in the output space after projection.

The objective criterion given in Eq. (6.4) has a very similar form to that of a standard
DNN given in Eq. (6.1). The weights of the network are optimized using EBP and gradient
descent,

ÒW F(W ; Z) =
Tÿ

i

ˆF(W ; Z)
ˆzi

ˆzi

ˆW
, (6.5)

where ÒW F(W ; Z) is the gradient of the objective criterion with respect to the DNN
weight matrix W . Using the same nomenclature as defined in Eq. (6.3), the gradient with
respect to the weights in the last layer is calculated as

ÒwL
n,p

F(W ; Z) = ≠�L
n,p ≠ 2“1wL

n,p

≠ 2“2
k2

kÿ

j=1
Êij(z(i),p ≠ z(j),p)

3
ˆz(i),p

ˆwL
n,p

≠
ˆz(j),p

ˆwL
n,p

4
,

(6.6)

where z(i),p refers to the activation of the pth unit in the output layer when the input vector
is xi. The error signal, �L

n,p
, is the same as the one specified in Eq. (6.3).

6.2.2 Architecture and Implementation

The computation of the gradient in Eq. (6.6) depends not only on the input vector, xi,
but also its neighbors, xj, j = 1, . . . , k, that belong to the same class. Therefore, MRDNN
training can be broken down into two components. The first is the standard DNN component
that minimizes a cross-entropy based error with respect to given targets. The second is the
manifold regularization based component that focuses on penalizing a criterion related to
preservation of neighborhood relationships.

An architecture for manifold regularized DNN training is shown in Figure 6.2. For each
input feature vector, xi, k of its nearest neighbors, xj, j = 1, . . . , k, belonging to the same
class are selected. These k + 1 vectors are forward propagated through the network. This
can be visualized as making k + 1 separate copies of the DNN one for the input vector
and the remaining k for its neighbors. The DNN corresponding to the input vector, xi, is
trained to minimize cross-entropy error with respect to a given target, ci. Each copy-DNN
corresponding to one of the selected neighbors, xj, is trained to minimize a function of
the distance between its output, zj, and that corresponding to the input vector, zi. The
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weights of all these copies are shared, and only an average gradient is used for weight-update.
This algorithm is then extended for use in mini-batch training. Note that for all practical
purposes, there is only one neural network; the copy-DNNs are only used for visualization
for easy understanding. After training, only one set of weights are kept for inference and
there is no additional computational complexity requirement.

Hidden Layers

W (Shared Weights)

xj, ωij
int DNN

(manifold regularization)xj, ωij
int DNN

(manifold regularization)xj, ωij
int DNN

(manifold regularization)xj, ωij
int DNN

(manifold regularization)xj, ωij
int DNN

(manifold regularization)

xj

 ωij
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DNN:
manifold 

regularization
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DNN:

cross-entropy

Error
Backprop

Input
Vector

Targets: zi

zj
Outputs:

Target: ci

zi
Output:

Near-Neighbor 
Vectors

Cross-entropy 
Error

Manifold
Error

Fig. 6.2 Illustration of MRDNN architecture. For each input vector, xi,
k of its neighbors, xj , belonging to the same class are selected and forward
propagated through the network. For the neighbors, the target is set to be
the output vector corresponding to xi. The scalar Êint

ij
represents the intrinsic

a�nity weights as defined in Eq. (3.1a).

It should be clear from this discussion that the relationships between a given vector
and its neighbors play an important role in the weight update using EBP. The gradient
updates in MRDNN depend not only on the current vector but also k of its neighbors. The
objective criterion is penalized if the network maps a feature vector far from its neighbors
in the source domain. This also leads to a more robust computation of the weight updates:
if the current feature vectors, xi, is corrupted due to noise or is an outlier, Êij would be
small for most of its neighbors, jÕs. For such a vector, the manifold error at the output of
the neural network –given by the second term in Eq. (6.4)– would be very small. Therefore,
such a data point would have less impact on the optimization of the neural network.
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6.2.3 Preserving Neighborhood Relationships

This section describes a study conducted to characterize the e�ect of applying manifold
based constraints on the behavior of a deep network. This is an attempt to quantify how
neighborhood relationships between feature vectors are preserved within the hidden layers
of a manifold regularized DNN. To this end, a measure referred to as the contraction ratio
is investigated. A form of this measure is presented in [70].

In this work, the contraction ratio is defined as the ratio of distance between two feature
vectors at the output of the first hidden layer to that at the input of the network. The
average contraction ratio between a feature vector and its neighbors can be seen as a measure
of locality preservation and compactness of its neighborhood. Thus, the evolution of the
average contraction ratio for a set of vectors as a function of distances between them can
be used to characterize the overall locality preserving behavior of a network. To this end,
a subset of feature vectors not seen during the training are selected. The distribution of
pair-wise distances for the selected vectors is used to identify a number of bins. The edges of
these bins are treated as a range of radii around the feature vectors. An average contraction
ratio is computed as a function of radius in a range r1 < r Æ r2 over all the selected vectors
and their neighbors falling in that range as

CR(r1, r2) = 1
T

Tÿ

i=1

ÿ

jœ�

1
k�

· ||z1
i ≠ z1

j||2
||xi ≠ xj||2

, (6.7)

where for a given vector xi, � represents a set of vectors xj such that r2
1 < ||xi ≠ xj||2 Æ r2

2,
and k� is the number of such vectors. z1

i represents the output of the first layer corresponding
to vector xi at the input. It follows that a smaller contraction ratio represents a more
compact neighborhood.

Figure 6.3 displays the contraction ratio of the output to input neighborhood sizes
relative to the radius of the neighborhood in the input space for the DNN and MRDNN
systems. The average contraction ratios between the input and the first layer’s output
features are plotted as functions of the median radius of the bins. It can be seen from the
plots that the features obtained from a MRDNN represent a more compact neighborhood
than those obtained from a DNN. Therefore it can be concluded that the hidden layers of a
MRDNN are able to learn the manifold based local geometrical representation of the feature
space. It should also be noted that the contraction ratio increases with the radius indicating
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Fig. 6.3 Contraction ratio of the output to input neighborhood sizes as a
function of input neighborhood radius.

that the e�ect of manifold preservation diminishes as one moves farther from a given vector.
This is in agreement with the local invariance assumption over low-dimensional manifolds.

The auto-encoder based manifold learning methods, such as given in [70], can be seen as
applying contraction in the directions perpendicular to the manifold (as these methods are
trying to map the feature-vectors onto the manifold). In comparison, the presented graph
based manifold regularization applies contraction (within each class) along the manifold.

6.3 Experimental Study

This section presents the experimental study conducted to evaluate the e�ectiveness of the
proposed MRDNN framework in terms of ASR WER. The ASR performance of a MRDNN
is presented and compared with that of a DNN without manifold regularization and the

PhD Thesis · Vikrant Singh Tomar · McGill University



6 Manifold Regularized Deep Neural Networks 97

traditional GMM-HMM systems. The experiments in this work are done on the Aurora-2
and the Aurora-4 tasks discussed in Section 2.8. The system setup are described in Section
6.3.1. The results of the experiments on the Aurora-2 task are presented in Section 6.3.2.
The results and comparative performance of the proposed technique on the Aurora-4 task
are presented in Section 6.3.3.

6.3.1 System Configuration

As a first step of DNN training, GMM-HMM systems are used for generating the context-
dependent state alignments. These alignments are then used as the target labels for training
the deep networks1. Both DNN and MRDNN systems include L2-norm regularization
applied to the weights of the networks. The ASR performance of these models is evaluated
in a tandem setup where a bottleneck deep network is used as feature extractor for a
GMM-HMM system. For the deep networks, the class labels or targets at the output are
set to be the CDHMM states obtained by a single pass force-alignment using the baseline
GMM-HMM system. Both DNN and MRDNN systems are trained with L2 weight-decay
with the value of the regularization coe�cient “1 set to 0.0001. Additionally, in the MRDNN
setup, the number of nearest neighbors, k, is set to 10, and “2 is set to 0.001.

For the Aurora-2 experiments, the deep networks have five hidden layers. The first four
hidden layers have 1024 hidden units each, and the fifth layer is bottleneck layer with 40
hidden units. The deep networks take 117-dimensional input vectors that are created by
concatenating 11 context frames of 12-dimensional MFCC features augmented with log
energy. The number of units in the output layer is 181, which is equal to the number of
CDHMM monophone states. The hidden units use either sigmoid or ReLUs as activation
functions. For the Aurora-4 experiments, larger networks are used. There are seven hidden
layers. The first six hidden layers have 2048 hidden units each, and the seventh layer is
bottleneck layer with 40 hidden units. The deep networks take 429-dimensional input vectors
that are created by concatenating 11 context frames of 12-dimensional MFCC features
augmented with log energy, and first and second order di�erence. This larger network for
Aurora-4 is in-line with other recent work [124], [125]. Keeping in-line with other work, the
baseline GMM-HMM system is also modified to include higher number of states and wider
pruning beam during HMM decoding [34]. This is the reason why the ASR WER results in

1Collectively, the term “deep network" is used to refer to both DNN and MRDNN configurations.
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Table 6.3 are somewhat di�erent than those presented in Table 3.3 in Chapter 3. Compared
to the baseline Aurora-4 system used in Chapter 3, the system used here contains 3202
senones instead of 1206, and a beam width of 350 instead of 2502.

For both Aurora-2 and Aurora-4, the soft-max nonlinearity is used in the output layer
with the cross-entropy loss between the outputs and targets of the network as the error
[118], [119]. After the EBP training, the 40-dimensional output features are taken from the
bottleneck layer and de-correlated using PCA. Only features corresponding to the top 39
components are kept during the PCA transformation to match the dimensionality of the
baseline system. The resultant features are used to train a GMM-HMM ASR system using
a maximum-likelihood criterion. Although some might argue that PCA is not necessary
after the compressed bottleneck output, in this work, a performance gain of 2-3% absolute
is observed with PCA on the same bottleneck features for di�erent noise and channel
conditions on the Aurora-4 dataset. No di�erence in performance is observed for the clean
data.

6.3.2 Results for the Aurora-2 Connected Digits Corpus

The ASR WER for the Aurora-2 speech-in-noise task are presented in Table 6.1. The models
are trained on the mixed-noise set. The test results are presented in four separate tables
each corresponding to a di�erent noisy subset of the Aurora-2 test set. Each noisy subset is
further divided into four subsets corresponding to noise corrupted utterances with 20 to 5dB
SNRs. For each noise condition, the ASR results for features obtained from three di�erent
techniques are compared. The first row of each table, labeled ‘GMM-HMM’, contains the
ASR WER for the baseline GMM-HMM system trained using MFCC features appended
with first and second order di�erences. The second row, labeled ‘DNN’, displays results for
the bottleneck features taken from the DNN. The final row, labeled ‘MRDNN’, presents
the ASR WER results for the bottleneck features obtained from the MRDNN described
in Section 6.2.1. For all the cases, the GMM-HMM and DNN configurations described in
Section 6.3.1 are used. The initial learning rates for both systems are set to 0.001 and
decreased exponentially with each epoch. Each system is trained for 40 epochs over the
training set.

2If beamwidth is set to ”, it means that only models whose maximum log probability token falls within
” below the maximum for all models are kept for search, and the rest are pruned/deactivated. For more
details see HTK documentation in [34].
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Noise Technique
SNR (dB)

Clean 20 15 10 5

Subway
GMM-HMM 1.76 2.99 4.00 6.21 11.89
DNN 0.94 1.19 1.69 2.95 6.02
MRDNN 0.74 0.91 1.60 2.39 5.67

Exhibition
GMM-HMM 1.89 3.34 3.83 6.64 12.72
DNN 0.88 1.23 1.54 3.30 7.87
MRDNN 0.54 0.96 1.44 2.48 7.24

Car
GMM-HMM 1.99 2.77 3.36 5.45 12.31
DNN 0.96 1.05 1.85 2.98 6.92
MRDNN 0.78 0.84 1.37 2.59 6.38

Average
GMM-HMM 1.88 3.03 3.73 6.10 12.31
DNN 0.93 1.16 1.69 3.08 6.94
MRDNN 0.69 0.90 1.47 2.49 6.43

Table 6.1: ASR performance of MRDNN system for mixed conditions training on the
Aurora-2 corpus. WERs for GMM-HMM, DNN and MRDNN systems are given.

Two main observations can be made from the results presented in Table 6.1. First,
both DNN and MRDNN provide significant reductions in ASR WER over the GMM-HMM
system. The second observation can be made by comparing the ASR performance of DNN
and MRDNN systems. It is evident from the results presented that the features derived
from a manifold regularized network provide consistent gains over those derived from a
network that is regularized only with the L2 weight-decay. The maximum relative WER
gain obtained by using MRDNN over DNN is 38.64%.

In addition to the experiments on the mixed-conditions noisy datasets discussed in Table
6.1, experiments are also conducted to evaluate the performance of MRDNN for matched
clean training and testing scenarios for the Aurora-2 set. To this end, the clean training sets
of the Aurora-2 corpus is used for training the deep networks as well as building manifold
based neighborhood graphs [90]. The results are presented in Table 6.2. It can be observed
from the results presented in the table that MRDNN provides 21.05% relative improvements
in WER over DNN for the Aurora-2 set.
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GMM-HMM DNN MRDNN % Imp.
Aurora-2 0.93 0.57 0.45 21.05

Table 6.2: WERs for clean training and clean testing on the Aurora-2 speech corporus for
GMM-HMM, DNN, and MRDNN models. The last column lists % WER improvements of
MRDNN relative to DNN.

6.3.3 Results for the Aurora-4 Read News Corpus

The ASR WERs for the Aurora-4 task are given in Table 6.3. All three acoustic models in
the table are trained on the Aurora-4 mixed-conditions set. The table lists ASR WERs for
four sets, namely clean, additive noise (noise), channel distortion (channel), and additive
noise combined with channel distortion (noise + channel). These sets are obtained by
grouping together the fourteen subsets described in Section 2.8. The first row of the table,
labeled ‘GMM-HMM’, provides results for the traditional GMM-HMM system trained using
MFCC features appended with first and second order di�erences. The second row, labeled
‘DNN’, presents WERs corresponding to the features derived from a L2 regularized DNN
system. The third row, labeled ‘MRDNN’, displays the WERs for features obtained from a
MRDNN. Similar to the case for Aurora-2, L2 regularization with the coe�cient “1 set to
0.0001 is used for training both the DNN and MRDNN. The initial learning rate is set to
0.003 and reduced exponentially for 40 epochs when the training is stopped.

Clean Noise Channel Noise + Channel

GMM-HMM 13.02 18.62 20.27 30.11

DNN 5.91 10.32 11.35 22.78

MRDNN 5.30 9.50 10.11 21.90

Table 6.3: ASR performance of MRDNN system for mixed conditions training on the
Aurora-4 corpus. WERs for GMM-HMM, DNN, and MRDNN systems are given.

The results in Table 6.3 compare the ASR WER performance of MRDNN and DNN
models for this corpus. Similar to the results for the Aurora-2 corpus, two main observations
can be made by comparing the performance of the presented systems. First, both DNN and
MRDNN provide very large reductions in WERs over the GMM-HMM for all conditions.
Second, the trend of the WER reductions by using MRDNN over DNN is visible here as well.
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Fig. 6.4 Comparison of Sigmoid and ReLU activation functions.

The maximum relative WER reduction obtained by using MRDNN over DNN is 10.3%.

6.4 Discussion and Issues

There are a number of factors that can have an impact on the performance and application
of DNN and MRDNN to ASR tasks. This section highlights some of the factors and issues
a�ecting these techniques.

6.4.1 Sigmoid vs ReLU Hidden Units

There are a number of di�erent nonlinearities that can be used as the activation functions
in the hidden units of a neural network. Some of these include:
sigmoid:

f(x) = 1
1 + e≠x

,

tanh:
f(x) = tanh(x), and

ReLU:
f(x) = max(0, x),
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where x is the input to the hidden unit. In this thesis work, the sigmoid and ReLU
nonlinearities have been investigated. The two functions are graphically compared in Figure
6.4. Therefore, sigmoid is well suited to model probability whereas ReLU is better suited to
model positive real numbers. The sigmoid function has range between 0 and 1, whereas the
ReLU function is unbounded at the top. A number of recent studies have compared the
benefits of using ReLU units over sigmoids for DNNs [69], [95], [116]. There are a number
of reasons that make using ReLU units advantageous over using sigmoid units:

• ReLUs are piecewise linear, as shown in Figure 6.4. This leads to a simpler opti-
mization with reduced computational complexity as they do not require division or
exponentiation.

• Using ReLUs results in sparse and regularized networks. While sigmoid units produces
small positive values when input to a unit is less than zero, ReLU units output exact
zeros. This increased sparsity can also lead to a more generalizable network [95].

• Sigmoid units su�er from the vanishing gradient problem, i.e., the gradient of the
function vanishes for the input, x, close to -1 or 1. In contrast, the gradient for the
ReLU units is 0 for x < 0 and 1 for x > 0. This constant gradient of ReLUs results in
faster learning.

Because of the aforementioned advantages, increasingly more recent works in deep
networks has adopted ReLU hidden units. In this thesis as well, ReLU units are found to be
superior to sigmoid units when used with the DNN or MRDNN systems. Similar to other
work, networks with ReLU units produces smaller errors and converge faster. Figure 6.5
compares the ReLU and sigmoid units for decrease in training error with epochs for the
Aurora-2 corpus. It can be seen that the network with ReLU units shows faster drop in
error and over-all smaller error.
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Fig. 6.5 Comparison of Sigmoid and ReLU hidden units for drop in CE error
with epochs over the training data for DNN training on the Aurora-2 speech
corpus.

Similarly, networks with ReLU units also lead to slightly improved ASR performance.
The ASR WERs for the Aurora-2 corpus are compared in Table 6.4 when training the
DNN and MRDNN systems with sigmoid and ReLU units. Two main observations can be
made by comparing the WERs in the Table. The first is that using ReLU units provide
much lower WERs for both the DNN and MRDNN system. The second observation is that
MRDNN provides consistent reductions in WERs over DNN irrespective of the choice of
unit activations. It is due to these evident benefits of ReLUs that most of the experiments
in this thesis have used ReLU units.

Noise Technique
SNR (dB)

Clean 20 15 10 5

Sigmoid DNN 0.99 1.15 1.97 3.27 7.55
MRDNN 0.74 0.97 1.60 2.68 6.59

ReLU DNN 0.93 1.16 1.69 3.08 6.94
MRDNN 0.69 0.90 1.47 2.49 6.43

Table 6.4: Comparison of Sigmoid and ReLU hidden units on the Aurora-2 speech corpus
for DNN and MRDNN systems.
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6.4.2 Computational Complexity

Though the inclusion of a manifold regularization factor in DNN training leads to encouraging
gains in WER, it does so at the cost of additional computational complexity for parameter
estimation. This additional cost for MRDNN training is two-fold. The first is the cost
associated with calculating the pair-wise distances for populating the intrinsic a�nity matrix,
�int. As discussed in Chapter 4, this computation complexity can be managed by using
locality sensitive hashing for approximate nearest neighbor search without sacrificing ASR
performance.

The second source of this additional complexity is the inclusion of k neighbors for each
feature vector during forward and back propagation. This results in an increase in the
computational cost by a factor of k. This cost can be managed by various parallelization
techniques [56] and becomes negligible in the light of the massively parallel architectures
of the modern processing units. This added computational cost is only relvent during the
training of the networks and has no impact during the test phase or when the data is
transformed using a trained network.

The networks in this work are training on Nvidia K20 graphics boards using tools
developed on python based frameworks such as numpy, gnumpy and cudamat [35], [36]. For
DNN training, each epoch over the Aurora-2 set took 240 seconds and each epoch over the
Aurora-4 dataset took 480 seconds. In comparison, MRDNN training took 1220 seconds for
each epoch over the Aurora-2 set and 3000 seconds for each epoch over the Aurora-4 set.

6.4.3 Exclusion of the Penalty Graph Term

In the applications of DML framework for feature space transformations, inclusion of both
the intrinsic and penalty graphs terms, as discussed in Chapter 3, is found to be important
[15], [16], [27]. For this reason, experiments in the previous work included both these terms
[28]. However, in experiments performed on the Aurora-2 and Aurora-4 corpora described in
Section 2.8, the gains achieved by including the penalty graph are found to be inconsistent
across noise conditions and task domains. Results for MRDNN with and without including
the penalty graph for the Aurora-2 and Aurora-4 corpora are given in Tables 6.5 and 6.6.
For the Aurora-2 set, an average of the three test noises given in Table 6.1 are given. For
the Aurora-4 set, same grouping for the test sets as given in Table 6.3 is used. The first
rows of the tables, labeled ‘MRDNN (only int.)’, show the WERs when only the intrinsic
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graph is used for manifold constraints. The second rows of the tables, labeled ‘MRDNN
(int. and pen.)’, show WERs when both the intrinsic and penalty graphs are used for
manifold constraints. It is apparent by comparing the two rows that the two results are
very similar, and including the penalty graph does not provide additional consistent WER
improvements. This may be because adding an additional term for discriminating between
classes of speech feature vectors might not always impact the performance of DNNs since
DNNs are inherently powerful discriminative models. However, including the penalty graph
does add to the computational complexity. Therefore, the penalty graph based term is not
included in any of the experiments presented in this work, and the manifold learning based
expression given in Eq. (6.4) consists of the intrinsic component only.

SNR (dB)

Clean 20 15 10 5
MRDNN (only int.) 0.69 0.90 1.47 2.49 6.43
MRDNN (int. and pen.) 0.70 0.92 1.40 2.53 6.42

Table 6.5: E�ect of including the penalty graph term in MRDNN objective criterion.
WERs for mixed noise training on the Aurora-2 speech corpus for MRDNN with and
without penalty graph term when ReLU hidden units are used.

Clean Noise Channel Noise + Channel
MRDNN (only int.) 5.30 9.50 10.11 21.90
MRDNN (int. and pen.) 5.32 9.80 10.31 22.10

Table 6.6: E�ect of including the penalty graph term in MRDNN objective criterion.
WERs for mixed noise training on the Aurora-4 speech corpus for MRDNN with and
without penalty graph term when ReLU hidden units are used.

6.4.4 E�ect of Noise

In previous work, the authors have demonstrated that manifold learning techniques are very
sensitive to the presence of noise [27]. This sensitivity can be traced to the Gaussian kernel
scale factor, fl, used for defining the local a�nity matrices in Eq. (3.1a). This argument
might apply to MRDNN training as well. Therefore, the performance of a MRDNN might
be a�ected by the presence of noise. This is visible to some extent in the results presented
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in Table 6.1, where the WER gains by using MRDNN over DNN vary with SNR level. On
the other hand, the Aurora-4 test corpus contains a mixture of noise corrupted utterances
at di�erent SNR levels for each noise type. Therefore, only an average over all SNR levels
per noise type is presented.

There is a need to conduct extensive experiments to investigate this e�ect as was done
in [27]. However, if these models are a�ected by the presence of noise in a similar manner,
additional gains could be derived by designing a method for building the intrinsic graphs
separately for di�erent noise conditions. During the DNN training, an automated algorithm
could select a graph that best matches the estimated noise conditions associated with a
given utterance. Training in this way could result in a MRDNN that is able to provide
further gains in ASR performance in various noise conditions. An alternative approach
would be to employ a noise-removal technique in the MRDNN training pipeline. Such a
technique could be used either as a pre-processing step (for example: stacked denoising
auto-encoders [65]) or in a multi-task learning fashion [126].

6.5 Alternating Manifold Regularized Training

Section 6.3 has demonstrated reductions in ASR WER by forcing the output feature vectors
to conform to the local neighborhood relationships present in the input data. This is achieved
by applying the underlying input manifold based constraints to the DNN outputs throughout
the training. There have also been studies in literature where manifold regularization is used
only for first few iterations of model training. For instance, authors in [127] have applied
manifold regularization to multi-task learning. The authors have argued that optimizing
deep networks by alternating between training with and without manifold based constraints
can increase the generalization capacity of the model.

Motivated by these e�orts, this section investigates a scenario in which the manifold
regularization based constraints are used only for the first few epochs of the training. All
layers of the networks are randomly initialized and then trained with the manifold based
constraints for first 10 epochs. The resultant network is then further trained for 20 epochs
using the standard EBP without manifold based regularization. Note that contrary to the
pre-training approaches in deep learning, this is not a greedy layer-by-layer training.

ASR results for these experiments are given in Table 6.7 for the Aurora-2 dataset. For
brevity, the table only presents the ASR WERs as an average over the four noise types
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Noise Technique
SNR (dB)

clean 20 15 10 5

Avg.
DNN 0.93 1.16 1.69 3.08 6.94
MRDNN 0.69 0.90 1.47 2.49 6.43
MRDNN_10 0.62 0.81 1.37 2.46 6.45

Table 6.7: Average WERs for mixed noise training and noisy testing on the Aurora-2
speech corpus for DNN, MRDNN and MRDNN_10 models.

described in Table 6.1 at each SNR level. In addition to the average WERs for the DNN
and MRDNN, a row labeled ‘MRDNN_10’ is given. This row refers to the case where
manifold regularization is used only for first 10 training epochs.

A number of observations can be made from the results presented in Table 6.7. First, it
can be seen from the results in Table 6.7 that both MRDNN and MRDNN_10 training
scenarios improve ASR WERs when compared to the standard DNN training. Second,
MRDNN_10 training provides further reductions in ASR WERs for the Aurora-2 set.
Experiments on the clean training and clean testing set of the Aurora-2 corpus also results in
interesting comparison. In this case, the MRDNN_10 training improved ASR performance
to 0.39% WER as compared to 0.45% for MRDNN and 0.57% for DNN training. That
translates to 31.5% gain in ASR WER relative to DNNs.

The WER reductions achieved in these experiements are encouraging. Furthermore, this
approach where manifold constraints are applied only for the first few epochs might lead to a
more e�cient manifold regularized training procedure because manifold regularized training
has higher computational complexity than a DNN (as discussed in Section 6.4.2). However,
unlike [127], this work only applied one cycle of manifold constrained-unconstrained training.
It should be noted that these are preliminary experiments. Similar gains are not seen when
these techniques are applied to the Aurora-4 dataset. Therefore, further investigation is
required before making any substantial conclusions.

6.6 Conclusions and Future Work

This chapter has presented a framework for regularizing the training of DNNs using
discriminative manifold learning based locality preserving constraints. The manifold based
constraints are derived from a graph characterizing the underlying manifold of the speech

PhD Thesis · Vikrant Singh Tomar · McGill University



6 Manifold Regularized Deep Neural Networks 108

feature vectors. Empirical evidence has also been provided showing that the hidden layers
of a MRDNN are able to learn the local neighborhood relationships between feature vectors.
It has also been conjectured that the inclusion of a manifold regularization term in the
objective criterion of DNNs results in a robust computation of the error gradient and weight
updates. It has been shown through experimental results that the MRDNNs result in
consistent reductions in ASR WERs that range up to 38.64% relative to the standard DNNs
on the Aurora-2 corpus. For the mixed noise training on Aurora-4 corpus, the relative WER
gains range up to 10%.
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Chapter 7

Conclusions and Future Work

This thesis has investigated manifold learning based techniques and their applications to
speech recognition. Discriminative manifold learning techniques for feature space transfor-
mations in speech recognition have been developed. The discriminative manifold learning
based constraints allow preserving the local geometric relationships inherent in the speech
feature vectors while increasing the discrimination between di�erent classes of the vectors.
It has been shown that the resultant features provide significant gains in ASR accuracy.
Finally, the application of these manifold learning constraints to deep neural networks has
also been explored. This chapter summarizes the work presented in this thesis and suggests
potential topics for future research.

7.1 Summary of Contributions

The main contributions of this thesis work has been presented in Chapters 3 to 6. A
summary of these contributions is presented as follows.

7.1.1 Discriminative Manifold Learning

Chapter 3 of this thesis has presented a family of DML based locality preserving feature space
transformation techniques for ASR. The proposed approaches attempt to preserve the within
class manifold based local relationships while at the same time maximize the separability
between classes. This is achieved by embedding the feature vectors into undirected graphs
by using nonlinear kernels and preserving or penalizing the local structure of the graphs.
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Two approaches have been presented that rely on two di�erent kernels utilizing Euclidean
and cosine-correlation distance measures. When compared to well-known approaches such
as LDA and LPP, the discriminative manifold learning algorithms demonstrated up to 30%
reduction in WER. It has also been shown that the use of the cosine-correlation based
distance measures is more robust than those based on Euclidean distances when speech is
corrupted by noise. Furthermore, these performance gains have been shown to generalize
across task domains and speaker populations.

7.1.2 Locality Sensitive Hashing

Despite the demonstrated e�ectiveness of the discriminative manifold learning based tech-
niques, their application to speech and other application domains is hindered by their
requirement of high computational complexity. Chapter 4 of this thesis has investigated
the application of a fast approximate nearest neighbor search algorithm, known as LSH, in
conjunction with the discriminative manifold learning techniques proposed in Chapter 3.
ASR WER and execution times have been reported for the LPDA and CPDA methods with
and without LSH. Performance comparisons have also been made between these approaches
and the more widely used LDA. CPDA utilizes a cosine-correlation based distance measure
to characterize the manifold domain relationships among feature vectors. For this reason,
a cosine adaptation of E2LSH scheme has been chosen for hashing. It has been demon-
strated that the use of LSH within the LPDA and CPDA frameworks leads to significant
computational gains without adverse e�ect on ASR performance.

7.1.3 Noise aware Manifold Learning

Having addressed the issue of high computational complexity of manifold learning methods
in Chapter 4, Chapter 5 of this thesis has investigated the e�ect of acoustic noise on the
performance of manifold learning techniques for speech recognition. It has been found
that the structural constraints associated with manifold learning approaches result in
transformed features that are more sensitive to mismatch in acoustic conditions than
untransformed MFCC features. It has also been shown that environment dependent
performance degradation can be traced to the choice of the size of the local neighborhood
used for defining local a�nity matrices in manifold learning. These observations have led to
a multi-model approach for improving the robustness of manifold learning based feature
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space transformations, referred to here as noise-aware manifold learning. This involved
automatic selection from a set of noise-matched LPDA transformations to find a transform
that best matches the estimated noise conditions associated with a given utterance. The
approach has been shown to reduce WER across a range of acoustic conditions with respect
to LDA and LPP based feature space transformations.

7.1.4 Manifold Regularized Deep Neural Networks

Motivated by the e�ectiveness of DML methods when applied to feature space transforma-
tions for ASR, Chapter 6 of this thesis has explored the application of manifold learning
to DNNs. This chapter has presented a framework for regularizing the training of DNNs
using discriminative manifold learning based locality preserving constraints. The manifold
based constraints have been applied to DNN training in order to preserve the underlying
low-dimensional manifold based relationships between feature vectors while minimizing the
cross-entropy loss between network outputs and targets. It has been shown that MRDNNs
provide consistent reductions in ASR WERs that range up to 38.64% relative to DNNs
trained without manifold regularization on the Aurora-2 corpus. For the Aurora-4 corpus,
the WER gains range up to 10.3% relative on the mixed-noise training task. Empirical
evidence has also been provided showing that the hidden layers of a MRDNN are able
to learn the local neighborhood relationships between feature vectors. It has also been
conjectured that the inclusion of a manifold regularization term in the objective criterion of
DNNs results in a robust computation of the error gradient and weight updates.

7.2 Future Work

The future directions of the manifold learning framework presented in this thesis can be
summarized in three general areas, namely the characterization of the local neighborhood,
importance of supervision and interclass discrimination, and the implications of recent
breakthroughs in speech recognition research. These are discussed separately in this section.
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7.2.1 Characterization of the Local Neighborhood

Manifold learning based relationships between feature vectors are defined by their local
neighborhoods. The structure of these local neighborhoods are characterized by the choice of
distance metric, a non-linear kernel and its scaling. Chapter 3 of this thesis has discussed two
separate kernels: one based on Euclidean distance and another based on cosine-correlation.
It has been shown that, in the presence of noise, use of a cosine-correlation based kernel
in estimating the manifold based relationships resulted in a higher recognition accuracy.
Furthermore, Chapter 5 has shown that the shape and size of these neighborhoods are
also a�ected by the presence of noise. Therefore, optimal choice of these parameters is
dependent on the distribution of data and background conditions. While Chapter 6 of this
thesis has demonstrated the e�ectiveness of manifold regularization for deep networks, a
thorough study analyzing the e�ect of di�erent kernels and distance metrics remains to
be seen. Furthermore, it would also be interesting to extend the studies presented in the
Chapter 5 of this thesis to characterize the impact of channel distortion on the application
of manifold learning techniques to speech recognition.

7.2.2 E�ective Graph Embedding

Another important open issue for future work is the computational complexity requirements
for computing the neighborhood based relationships for graph-embedding. Chapter 4 of this
thesis has shown successful use of LSH for reducing this complexity; however, application of
these techniques to datasets worth thousands of hours of speech remains an arduous task.
For e�cient application of manifold learning techniques to speech recognition, new methods
for defining the neighborhood relationships needs to be investigated.

7.2.3 Filter-bank features and application to large speech corpus

In recent years, two interesting findings have help further optimize the application of DNNs
to ASR. The first is the use of filter-bank features (FBANK) instead of the conventional
MFCC features. A number of researchers, starting with [57], have shown that when DCT is
not applied to the log-compressed output of the Mel-filterbank, the resultant features lead
to better behaving DNN models. These models also lead to better performance in ASR. In
this thesis, only MFCC features have been used for training the DNN and MRDNN models.
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While the author expect to obtain similar gains by using MRDNN over DNN with FBANK
features, it would be interesting to see this verified by experiments.

The second finding is that typical regularization methods, such as weight-decay and
dropout, might become unnecessary for DNNs, if thousands of hours of speech is used
for training [68], [69]. Naturally, a question arises whether the proposed manifold based
regularization methods will still maintain the observed gains over DNNs when trained
on such large datasets. Owing to the optimization constraints based on strong local
relationships between feature vectors, this should still be true, particularly in the presence
of noise. However, such experiments have not been conducted in this thesis. One interesting
experiment in this direction would be to compute the graph-embedding based a�nity
matrices on clean data, and use those to regularize deep net’s training in the presence of
noise. This work is left for future work.

7.2.4 Supervised vs Unsupervised Manifold Learning

The majority of the work in manifold learning literature has focused on unsupervised [2], [5],
[8], [19], [128] or semi-supervised learning [120], [122], [129]. These techniques assume that
by using manifold learning based constraints they can exploit the inherent relationships
among the feature vectors or structure of the feature-space in order to separate naturally
occurring clusters or classes in the data [1]. However, it has been shown in recent years that
manifold learning based techniques can benefit from information about class distribution
of the feature-space, either in a supervised or semi-supervised manner [4], [6], [12]. For
example, authors in [14] and [16] have shown that features extracted using LPP lead to
increased ASR accuracy when class based supervision is applied. Inspired by these studies,
the work in this thesis has focused on supervised discriminative manifold learning; however,
it raises a number of questions in relation to unsupervised and semi-supervised learning:

• the first question is how unlabeled data can be e�ectively exploited in order to reduce
the performance gap between supervised and unsupervised approaches. This has been
an open question in the research community for some time given the di�culty in
labeling speech data [120]. In the context of deep networks, an obvious approach to
this end is to simultaneously learn from large unlabeled datasets by applying manifold
learning and from smaller labeled datasets by applying conventional back propagation.
While previous approaches in this manner have not led to significant improvements

PhD Thesis · Vikrant Singh Tomar · McGill University



7 Conclusions and Future Work 114

[130], many open issues remain. The issue most relevant to the work in this thesis is
whether applying the proposed form of manifold regularization in deep learning on
both labeled and unlabeled data can lead to worthwhile accuracy gains. An interesting
approach would be to use multitask learning (see Section 7.2.5). Alternatively, the
manifold regularization based techniques could be used for pre-training on a large
unlabeled dataset, followed by fine-tuning on a smaller labeled set. This might lead to
new possibilities for low-resource scenarios. Another open issue is whether additional
unlabeled data can lead to further improvements in the performance when these
techniques are applied in a semi-supervised manner.

• A second question is whether manifold learning can be used to minimize the impact
of condition mismatch between training and usage scenarios on the performance of
ASR systems. Chapter 5 of this thesis has shown promising results towards using
the supervised discriminative manifold learning based feature space transformation
techniques for increased noise robustness compared to similar unsupervised approaches.
This should be investigated for the presently ubiquitous deep learning approaches in
ASR. Furthermore, as the underlying manifold based relationships are best represented
by clean data, it would also be interesting to investigate the noise robustness e�ects of
these techniques when manifold based graph structures or relationships are computed
on clean data and applied to noisy data.

7.2.5 Manifold Learning and recent breakthroughs in Speech Recognition

The technological landscape for ASR has seen a dramatic shift with the advent of deep
learning. A number of new breakthroughs have been made in past few years and unforeseen
ASR accuracy have been achieved. In some cases, the conventional GMM-HMM based
speech recognition pipeline has been completely replaced with new end-to-end systems.
This section discusses the potential of manifold learning in the context of these innovations.

Most popular of these is the use of long short term memory (LSTM) units based recurrent
neural network (RNN) models in conjunction with connectionist temporal classification
(CTC) for end-to-end speech recognition [131]–[135]. RNNs employ a feedback structure
that enables them to take into account previous states of the network when estimating the
current activations. In additon, RNNs with LSTM units are able to model the long term
context that exists between speech frames. The gated and memory nodes based architecture
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of LSTM units provides increased control over the memory and temporal context to RNNs
[136]. As it is not clear how to define the manifold learning based neighborhood constraints
for these sequential approaches, the application of the proposed manifold regularization
based techniques in the context of RNNs remains a challenging yet interesting topic for
future research.

In related work, speech recognition research has shown progress in the direction of
feature free implementations. In these methods, the initial signal processing based features
extraction steps are no longer needed, and the filter-banks are directly learned from raw
speech waveforms of training data by a neural network based system [137]–[140]. These
methods have the potential of discovering the hidden feature patterns in speech that the
conventional signal processing based methods might have missed. Therefore, these methods
might result in speech recognition systems with simpler implementations and a higher
degree of recognition accuracy. Similar to the RNN work, it is not clear how to apply
manifold learning to these methods, and whether this application would lead to gains in
their recognition performance.

Another recent wave of work includes the application of multitask learning, in particular,
to improving the behavior of deep learning algorithms for ASR acoustic models [126], [141].
Multitask learning adds additional related tasks to the main task and attempts to take
advantage of interactions between them. The argument is that sharing information among
related tasks can help the model in learning to perform those tasks more e�ciently. The
authors in [142] have argued that it may be better for a neural network to learn two or more
related tasks together rather than to learn each separately. This, in a way, is motivated
by learning in humans [143]. When applied to ASR, these learning algorithms regulate
parameter estimation in deep networks by combining the loss function associated with
phone or state classification with various secondary task dependent loss functions. The
manifold regularization framework presented in this thesis is related to mutitask learning,
where a DNN is trained to minimize the cross-entropy error between its input and targets
as the primary task and to minimize a manifold learning based loss as the secondary task.
However, further research needs to be done to fully establish manifold regularization in the
multitask learning framework. Some of the issues to be investigated are the application
of manifold regularization constraints at di�erent layers and the number of shared layers
between the tasks. Authors in [143] have also shown that incorporating two additional tasks
can be more beneficial than incorporating one additional task. In this regard, it would be
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interesting to see the e�ect of combining the manifold regularization task with recent work
on noise robustness in a multitask learning framework [141]. This is particularly interesting
given the noise robust behavior of discriminative manifold learning as discussed in Chapters
3 and 5 of this thesis.
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