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Scope and Motivation

• Ideally, speech communication systems use direct signal of a
source

• In real life scenarios, major challenges originates from the
degradation in capturing speech in a confined space:

• Background noise
• Reverberation
• Other interferences

• Linear Prediction residual is a very good metric of
reverberation in speech.
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Reverberation

• Reverberation: Presence of delayed and attenuated copies of
source signal in the received signal.

• Cause: Reflections from various surfaces in the room.

• Received Signal is the clean speech convolved with the Room
Impulse Response (RIR), and added ambient noise:

x(n) = s(n) ∗ g(n) + w(n)

• Measure: Reverberation time (T60): Time required for a
sound to drop 60 decibels or to decay to a value one millionth
of its original intensity.
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Acoustic Environment of a Room

Example (The simplest case of single reflective surface)

A typical Room Impulse Response.
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Dereverberation

Aim To get clean speech out of reverberated signal using
deconvolution (in some sense).

Classification

• General Signal ←→ Speech Signal

• Based on Enhancement:
Human Perception ←→ Automatic Speech Recognition (ASR)

• Single Channel ←→ Multi-Channel
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Approaches

General Signal

No a priori knowledge about the signal.

Speech Signal

Various properties of speech and language can be utilized, such as:
voiced/unvoiced speech, harmonic structure, Model of speech
production, etc.
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Approaches

For Better Human Perception

• Improve intelligibility

• Try to get a nicer, nearer sound.

• Rather leave some reverberation than causing spectral
distortion

• Application: Hands-free Telecommunication

For Better ASR:

• Get rid to as much reflections as possible.

• A nice sound, in terms of human perception, is not aspired.
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Linear Prediction and residual

• Source-Filter Speech Production AR Model:
• Excitation source (Glottal Pulse train, noise)
• Vocal Tract (Modelled as an All-pole filter by linear prediction)

• Speech Signal, s(n) = u(n)−
∑l

k=1 h(k)s(n − k)

• Predicted Signal, s̃(n) =
∑l

k=1 a(k)s(n − k)

• LP residual, e(n) = s(n)− s̃(n)

• If speech signal were to be truly the response of an all-pole
model → exact predictability at all instants except the
excitation instant, i.e.,

e(n) = u(n); For a(n) = h(n)

• Hence, LP residual essentially represents the excitation signal
for voiced speech.
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Linear Prediction and Reverberation

• Reverberation mainly affects the excitation signal ⇒ LP
residual

• Many different approaches to manipulate the LP residual.
• Apply an adaptive weight function to the LP-residual, [5].

(emphasizes regions with high signal-to-reverberation ratio.)
• Apply a Code Excited Linear Prediction (CELP) post-filter to

the LP-residual.
• Exploit the higher order statistical properties of

LP-residual, e.g., Kurtosis [2, 4].
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Maximum Kurtosis based Adaptive Filtering: An Overview

• Control the LMS-like adaptive filter by the ”Kurtosis” of the
LP residual

• Make use of a priori knowledge that the signal to be used is
Speech.

• Speech Enhancement for human perception (useful for
applications related to hearing aids).

• Single/Multi-channel implementation

• Exploits the properties of cumulants, and speech: Higher
order statistics of a Gaussian distribution are zero, hence
removes the Gaussian Noise.
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What is Kurtosis?

• Etymological meaning: Bulging

• A measure of the “peakedness” of the probability distribution
of a real-valued random variable.

Γ =
κ4

κ2
2

=
µ4

σ4
− 3 (1)

where:
• κn := n-th cumulant
• µn := n-th central moment, := E [(X − µ)n]
• σ := second central moment (= std. div.)

• Kurtosis of the normal distribution is 3; 3 is subtracted for
normalization.

• Note that cumulants show linear behaviour.
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a priori knowledge!

• For clean voiced speech, LP residuals have strong peaks
corresponding to glottal pulses.

• For reverberated speech, such peaks are spread in time.

• Implying that, Kurtosis of LP residuals reduces as
reverberation increases.

• It has been empirically proved that the Kurtosis of LP residual
is a reasonable reverberation metric, [2].
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Kurtosis of LP residual: Some results

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60
Kurtosis of Residual vs distance −− Mic fixed Src is moving

Distance between Mic and Src (m)

K
u

rt
o

s
is

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140
Kurtosis of Residual vs distance −− Mic fixed Src is moving

Distance between Mic and Src (m)

K
u

rt
o

s
is

 

 

Kurtosis of residual

Kurtosis of Clean signal

Kurtosis of Clean Residual

Simulated Room Environment with following details:
4 × 13 × 4 m3

Mic: Fixed at [2, 2, 2]
Source: Moving from [2, 3, 2] to [2, 12, 2] (10 points)
Reverberation time: T60 = 0.4 seconds

Note: Identical results if source is fixed and mic is moving.
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Implementation - 1

• Develop online adaptive gradient ascent algorithm, that
maximizes the LP residual kurtosis.

• Issue: Only valid under the assumption that the
LP-coefficients are unaffected by the multipath effects of the
room (Holds only in spatially averaged sense).
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Implementation - Final

• Reliance on the assumption is removed by using an additional
filter with identical coefficients.
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Feedback Function

Cost function = Kurtosis of Residual

J(n) =
E [ỹ 4(n)]

E 2[ỹ 2(n)]
− 3 (2)

Differential of Cost function

δJ

δ~h
=

((
E [ỹ 2]y 2 − E [ỹ 4]

)
ỹ

E 3[ỹ 2]

)
x̃ = f (n)x̃(n) (3)

Feedback function

f (n) =

((
E [ỹ 2]y 2 − E [ỹ 4]

)
ỹ

E 3[ỹ 2]

)
(4)
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Update Equation

• For single channel implementation:

~h(n + 1) = ~h(n) + µf (n)x̃(n) (5)

• For multi channel implementation:

~hc(n + 1) = ~hc(n) + µf (n)x̃c(n) (6)

Each channel is independently adapted using the same
feedback function.

• E [ỹ 2(n)] and E [ỹ 4(n)] are estimated recursively:

E [ỹ 2(n)] = βE [ỹ 2(n − 1)] + (1− β)ỹ 2(n) (7)

E [ỹ 4(n)] = βE [ỹ 4(n − 1)] + (1− β)ỹ 4(n) (8)
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Experiments and Results

Case 1: Clean Speech Fs = 8000 Hz; Room: Dim: 4 × 4 × 4 m3; Mic: [2,3,2], Src: [2,2,2]; T60=0.7 Sec
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Waveform – Matlab
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Waveform – Wavesurfer
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Spectrogram
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Case 2: Blind Dereverberation. No info about Room or Clean Speech. Fs = 16000 Hz;
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Waveform – Matlab
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Spectrogram
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Case 3: Blind online Dereverberation. No info about Room. Fs = 8000 Hz, Room Impulse response taken from
AIR databese, Aachen University, Germany [3]
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Waveform – Matlab
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Conclusions and Future Work

• Kurtosis of LP residual is an effective measure of
reverberation in speech.

• Significant improvement in reverberated speech was noticed.

• However, does NOT work very well with unvoiced
discontinuities in speech.

Future Work

• Authors in [1] claims that an average over several spatially
distributed microphones can provide potentially better results.

• Time domain implementation is prone to slow or no
convergence because of all variance in the eigenvectors of
autocorrelation matrices of the input signal.

• A subband adaptive method is promoted in [2] which is more
robust to noise.
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Thank You!
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Cumulants

• The cumulants kn of a random variable X are defined by the
cumulant generating function, which is logarithm of the
moment-generating function.

• g(t) = log(E [etX ]) =
∑∞

n=1 κn
tn

n!
= µt + σ2 t2

2
+ ...

• Cumulants are then given by derivatives at zero of g(t).
• k1 = µ = g ′(0)
• k2 = σ = g ′′(0), and so on...
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