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Abstract

Reverberation in speech, caused by room reflections, is problematic specially for hands-free

telephonic applications in a confined space. The problem is even severe for hearing impaired

people. Therefore blind speech dereverberation is an important research area. The task is

to remove reverberation from the output of a room, where the room impulse response, as

well as the clean speech signal is unknown. The method discussed herein maximizes the

fourth order cumulant, referred to as Kurtosis, of the Linear Prediction (LP) residual of

the speech to remove reverberation from the degraded speech.
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Preface

The report will cover analysis, implementation, and test of the maximum kurtosis based

algorithm used to deconvolve room impulse response. Primary metrics of the algorithm

analysis, discussed herein, include the ability to deconvolve, convergence speed, and the

number of required multiplications. The implementation of the algorithm is done on MAT-

LAB R2009a in a 64-bit environment.

In the report, the natural algorithm is denoted with log; otherwise the base is stated.

Throughout the report, the whole sequence of a signal will be denoted by a vector written

with bold letters, i.e. x, whereas x(n) will correspond to an element in that sequence.

If both time and vector indices are used the variable hj(k) is the j’th coefficient at time

index k, where the bold face represents a vector. Literature references are represented with

numbers in IEEE format, e.g. [number], and a the full list of references is found in the

References section.

The report also includes the MATLAB implementation of the algorithm.1

1The LATEX 2ε source of this report, and related MATLAB codes can be downloaded from http://www.
ece.mcgill.ca/∼vtomar/reports/dsp2.

http://www.ece.mcgill.ca/~vtomar/reports/dsp2
http://www.ece.mcgill.ca/~vtomar/reports/dsp2
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Chapter 1

Introduction

Sound waves travel as waveforms, which are then reflected by various surfaces, and objects

in the room; such reflected multipath signals form a delayed and attenuated feedback of the

source signal to the sink/Mic. Such a feedback is referred to as reverberation, and causes

degradation of the speech intelligibility.

1.1 Motivation and Problem Statement

Speech reverberation, mixed with environmental noise, is regarded as one of the primary

issue in the speech capturing in a confined space, for example, business offices. Normally,

degraded (additive or reverberant) speech is processed assuming that the degradation has

long term stationary characteristics relative to speech; many methods of speech enhance-

ment have been proposed based on this concept. Unfortunately, due to sharp changes in

spectrum within a speech frame and across the frames, the resulting processed speech pro-

duces significant audible distortions. Such noise reduction is accomplished at the cost of

quality. Thus it is required to look at the methods focusing on characteristics of speech for

enhancement of degraded speech rather than the degradation itself.

Over the years, several methods of speech dereverberation based on a simplified discrete

model of speech production have been proposed. The basic model consists of an excitation

source, and a time-varying vocal tract filter. Such as model can easily be modeled by an

Auto-Regressive (AR) linear prediction (LP) technique. The inverse LP filter gives the

LP-residual, which is a close approximation of the excitation signal. The motivation for

this project is the observation that in reverberant environments, the LP residual contains

2012/02/20



1 Introduction 2

the original impulses followed by several other peaks due to multi-path reflections. Thus,

dereverberation can be achieved by modifying the spectral envelope and/or the excitation

signal.

1.2 Approach

It has been empirically established that, for clean voiced speech, LP residuals have strong

peaks corresponding to glottal pulses, whereas for reverberated speech such peaks are

spreaded in time [1], in other words, LP residual of reverberated speech is a time-spread

version of the relatively more peaky LP residual of clean speech. Thus, amplitude spread, in

a degraded signal, can be seen as a reverberation metric. Recent researches have suggested

to look at kurtosis, which is a degree of peakedness of a distribution, as a reasonable measure

of reverberation [2, 3]. The goal of this project is to study an on-line gradient-ascent

algorithm to maximize LP residual Kurtosis, as proposed in [4]. In such an attempt, there

will be more emphasis on the speech – and enhancement for human intelligibility – than

on the degradation during the enhancement. The project will focus on single microphone

setup for it is more practical as well as challenging. Furthermore, the scenario considered

here is that of Blind Derevereberation, where neither the clean signal, nor the room impulse

response (RIR) is known. This is the case in most practical situations.

Based on the targeted application, the problem of dereverberation can further be di-

vided into two major classes, namely dereverberation targeted Automatic Speech Recogni-

tion (ASR) systems, or dereverberation targeted at making the signal more intelligible to

humans. This work is mainly targeted at the latter class. When we want to remove the

dereverberation for better human intelligibility we want to make the signal sound better

while protecting the spectral distribution of formants; it is better to leave some reverber-

ation than causing spectral distortion. However, when the target is ASR, the goal is to

maximize the Signal-to-Noise ratio by removing as much reverberation as possible; a nice

speech – in terms of human perception – is not aspired.

There have been a lot of work done in this area. Some of the interesting methods are

presented in the next section.
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1.3 Related Literature

The RIR, in general, is non-minimum phase. A non-minimum phase filter is a mixture of

a minimum phase filter, where all singularities lie inside the unit circle, and a maximum

phase filter, where all the singularities lie outside the unit circle. Therefore, the inversion

of a non-minimum phase filter will result in a filter which has poles outside the unit circle,

such a filter cannot be causal and stable at the same time. Thus the approach available is

to estimate a near-inverse RIR filter to cancel the effect of room in the degraded speech.

For the same reason, second order statistics cannot be used to reconstruct a direct signal,

and therefore, higher order statistics, such as kurtosis, are required.

The idea of using kurtosis to remove reverberation from speech was at first proposed

by Tanrikulu et. al. in [3], as Least-mean kurtosis. However, the authors did not exploit

any speech specific properties of the input signal. Later, Gillespie et. al. in [4] proposed an

LMS-like gradient maximizing algorithm that maximizes the kurtosis of the LP residuals of

the speech signal to the clean speech. LP residual has been used as an efficient metric for

the reverberation in speech, and many different algorithms has been proposed utilising LP

residual for reverberant speech enhancement. Authors in [1], for example, have utilised an

LP residual weighting scheme which enhances the regions with high signal-to-reverberation

ratio in a speech signal. Other methods of dereverberation include spectral subtraction, as

used in [5]. In [6], authors have proposed to use the CELP postfilterfor dereverberation.
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Chapter 2

Project Definitions and Background

This chapter present a brief introduction to widely used concepts in this report.

2.1 Room

In this section the room and its properties are described. The room is described a the

filter, g, between the source and sink i.e. speaker and microphone. The clean output of

the speaker is the speech, s, and the signal at the sink is the reverberated speech x. The

effect of ambient environment on speech can be modeled as a convolution in time of the

speech signal and the RIR [7]. Furthermore, the system can also be modeled as containing

additive noise [1]. This is illustrated in Fig. 2.1 and Eq. 2.1.

s −→ g −→ x

Fig. 2.1 Block diagram of speech convolution with room impulse response.

x(n) = g(n) ∗ s(n) + w(n) (2.1)

Where, n is the time index, and w(n) is the additive noise.

In this project, different room models were used. For many experiments, simplified room

filters were defined using the famous image-source method. However, the implementation

proposed by Lehamn and Johansson [8], which promises to address the problem of anoma-

lous tail decay in the original image-source method proposed by Allen and Berkley [9],

was used. Furthermore, real life RIRs were downloaded from Aachen university’s Aachen

2012/02/20



2 Project Definitions and Background 5

Impulse Response database [10], and convolved with clean speech signal to produce rever-

berated speech.

2.2 Reverberation

When a person is speaking in a regular room, the listeners will not only perceive the direct

speech signal, but also various multipath copies of it created by reflections on the room walls

and other objects. The multipath signals are delayed and possibly attenuated as compared

to the direct signal. This phenomenon is known as reverberation. A very simple scenario

with only one reflective surface is illustrated in Fig. 2.2. To tackle this degradation, it is

of interest to minimize the effect of the room.

In time domain, such effects can be divided into early and late reflections. Early re-

flections can be defined as first 50-100 ms of the reflection. Early reflections are good for

the speech intelligibility for humans, as they provide information related to the acoustic

environment, such as, size of the room, and the position of the speaker in the room. Fig.

2.3 illustrates the direct, early and late signals.

Fig. 2.2 The simplest case of one reflective surface.

2.3 Speech Production Model

The vocal tract can be modeled as an autoregressive (AR) process. The voiced sounds are

generated when the input is given as quasi-periodic pulses, also referred to as the glottal
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Figure 2.2: The direct, early and late reflections in the time domain. Based on [13, Fig. 1].

The early reflections are the coloration of the speech whereas the late reflections are referred
to as echoes.

2.2 Speech Signal

The algorithms must be developed and tested under known and controlled conditions. A key
assumption for the input to the room is that it is independent (also denoted a white process)
and non-Gaussian distributed. This assumption will be used throughout the report and in
the algorithms presented in the following chapters. The algorithms have been tested using
iid samples drawn from a probability density function (pdf) based on the function cosh(·).
The pdf will be described in detail and substantiated in chapter 6. Its property is that it is
very easy to adjust to fit the a priori knowledge of the source, which in this project is speech.
The project group suggests the pdf to be a suitable match for the speech and it is used when
testing the algorithms on the room filters mentioned in the previous section.

A real speech signal is also used for testing the algorithms. This however will only be used
when testing on the real life RIR. Speech sounds are made when air passes through the vocal
folds. The vocal folds can be moved together or apart, where the distance between them are
called the glottis. When they are close together and air passes through them, they start to
vibrate, and the sounds made are referred to as voiced sounds such as [b], [g] and all the
English vowels. When they are far apart the air cannot make the vocal folds vibrate and
unvoiced sounds are made such as [k] and [f]. [14]
In figure 2.3 a simplified model for speech generation is given.

Vocal tract filter

t

t

Synthesized 

speech

Voiced

Unvoiced

Figure 2.3: Block diagram of speech generation.

The vocal tract can be modelled as an autoregressive (AR) process. The voiced sounds are
generated when the input is given as a pulse train also referred to as the glottal pulses. Un-
voiced sounds are made when the input is white noise. Linear predictive coding (LPC) relies
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Fig. 2.3 The direct and reflected signals in time domain.

pulses. Unvoiced sounds are made when the input is white noise. This simple source-filter

model is illustrated in Fig. 2.4.

2.4 Performance Metrics

The selected metrics for algorithm evaluation are computation complexity, measured in

the number of used multiplications, spectrogram, and subjective quality measures such

as, feedback from many listeners. Spectrogram gives visual cues of formant spreads in

time because of reverberation. Both computational complexity and subjective quality are

important metrics for an hearing aid application, which has limited computational powers

at its disposal. Therefore, it is important that the algorithms are as effective as possible, and

giving as clear output as possible. Other important metrics are execution time (measured
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Fig. 2.4 Block diagram of source-filter model of speech production.
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in seconds or clock cycles) and the amount of required memory for program and data

storage. The execution time and memory requirements will however not be analysed in

this project, but an estimate of how far the algorithms are from a real time application

will be considered. Also, mean-square error between the original and reconstructed signal

is not used here, because the system is not driven to minimize the mean-square error, and

minimum mean-square error does not necessarily correspond to better sounding speech.

2.5 Higher Order Statistics

The main advantage of using higher order statistics follows the hypothesis that the received

signal at the Mic, x(n), can be considered as composed of a Gaussian distributed, and a

non-Gaussian distributed component. One important assumption here is that the input

clean speech is non-Gaussian. A reverberated speech signal is a multipath signal, and it

is represented as weighted, delayed, and summed copies of the same signal. Hence from

central limit theorem (CLT) – which states that the distribution of the sum of independent

and identical distributed (iid) signals is approximately Gaussian – the ambient noise and

reverberation added to the signal because of convolution with RIR, can be considered as

being Gaussian distributed.

All Gaussian distributed signals have higher order statistics equal to zero. The idea

is therefore to establish a cost function that maximizes the higher order statistics of the

reverberated signal, which entails that the processed signal should obtain a pdf that is

non-Gaussian, that is, the room impulse response has been removed.

In higher order statistics, we would want to focus on the 3rd and 4th order cumulants.

The nth order cumulants cn of a random variable X are defined by the cumulant generating

function, which is logarithm of the moment-generating function.

g(t) = log(E[etX ]) =
∞∑
n=1

κn
tn

n!
= µt+ σ2 t

2

2
+ ... (2.2)

Cumulants are then given by derivatives at zero of g(t). A more general definition of

the nth order cumulant for a non-Gaussian stationary random process x(k) is given in [11,

Eq.19]:

cxn(τ1, τ2, .....τn−1) , mx
n(τ1, τ2, .....τn−1)−mG

n (τ1, τ2, .....τn−1) (2.3)
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Where, the parameter mx
n is the nth order central mean of x(k), and mG

n the nth order

moment of a Gaussian signal with mean and autocorrelation equal to those of x(k). The τ ’s

are different delays, and cxn is the nth order cumulant of x(k). It is important to note here

that the above equation is not valid for n = 2. The 2nd order cumulant is auto-covariance

of x(k). It is clear from Eq. 2.3 that if x(k) is Gaussian distributed, the cumulants will be

zero. This prove that the higher order cumulants are not affected by the Gaussian noise.

Finally, it is worth mentioning three commonly used parameters, which are defined for zero

delay, and zero mean (or central mean), i.e., have moments equal to cumulants.

cx2(0) = E[x2(n)] = σ2
x

cx2(0, 0) = E[x3(n)] = γ3x

cx4(0, 0, 0) = E[x4(n)]− 3(σ2
x)2 = γ4x

(2.4)

Where σ2
x is the variance, γ3x is the skewness, and γ4x is the kurtosis. The 3(σ2

x)2 factor is

important to note as the kurtosis of a normally distributed signal equals to 3(σ2
x)2. A more

widely used flavour of kurtosis is the normalized kurtosis, defined as:

κx =
γ4x

(σ2
x)2

=
E[x4(n)]

(σ2
x)2

− 3 (2.5)

Thus the normalized kurtosis of a normally distributed signal equals to zero. Kurtosis

is a measure of “peakedness”, i.e., a signal with many large value in the middle and small

values at the tails has a positive kurtosis.

This concludes the brief presentation of higher order statistics and this chapter. The

developed concepts and definitions will be utilized in the forthcoming chapters.
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Chapter 3

Dereverberation

Having acquired sufficient background in previous chapters, we would look at the kurtosis

based method of dereverberation in this chapter.

3.1 Linear Prediction of Speech

A Speech signal can be expressed as a linear combination of its past samples. Based on the

source-filter model discussed in Section 2.3, the clean speech can be modeled as an output

of an all-pole process.

s(n) = −
p∑

k=1

aks(n− k) + u(n) (3.1)

where ak’s are the corresponding filter coefficients, and u(n) is the glottal pulse excita-

tion signal. Let’s say the predicted signal for the above speech be s̃(n), which can also be

modeled as an output of an all-pole process.

s̃(n) = −
p∑

k=1

bks(n− k) (3.2)

where bk’s are the linear prediction (LP) coefficients. Now, if the speech signal were truly

generated by an all-pole filter, Eq. 3.2 would be an exact prediction of the speech signal

at all times, except the glottal excitation instants, i.e.,

For ak = bk; error in prediction, e(n) = s(n)− s̃(n) = u(n) (3.3)

2012/02/20



3 Dereverberation 10

This error in prediction is refered to as LP residual. It is evident from Eq. 3.3 that the

LP residual whitens the speech signal, and – in ideal conditions – represents the excitation

signal.

In a similar fashion, LP of the reverberant speech can be written as,

x(n) = −
p∑

k=1

hkx(n− k) + ex(n) (3.4)

where ex(n) is the LP residual for the reverberant speech. As reverberation mainly affects

the excitation signal, it can be removed by modifying the LP residual in a manner to

achieve ex(n) = u(n), and then the clean speech signal can be synthesized from the cleansed

residual.

3.2 Maximum Kurtosis based Dereverberation

In this section the maximum kurtosis based blind dereverberation is discussed. The basic

idea is to maximize the kurtosis of LP residual of received reverberant signal to achieve

dereverberation. The concept stems from the fact that the LP residual of a speech signal

closely approximate the glottal excitation signal, and hence, it has quasi-periodic peaks.

These peaks spread in time if reverberation is present/increased, and hence reverberation

causes the LP residual of speech to become less peaky. Recall from Section 2.5 that kurtosis

is a measure of the peakedness of a signal. Hence, the kurtosis of the LP residual of a speech

signal increases as the reverberation in speech increases. An experimental proof of the same

is presented later in Section 4.1.

In [4] Gillispie et al. present an adaptive algorithm to maximize the kurtosis of LP

residuals. In the steepest-ascent algorithm, the cost function is given as the normalized

kurtosis, as in Eq. 2.5. The block diagram for the algorithm is given in Fig. 3.1.

The adaptive filter h(n) is controlled by the feedback function f(n) given by the chosen

cost function (described later). And the filtered LP residual ỹ(n) so achieved is used to

synthesize the dereverberated signal y(n). An important assumption is made here, that the

predictor coefficients obtained from the LP analysis are unaffected by the reverberation,

and can be used to synthesize the clean speech from the filtered residual. This may not

be true always. Hence, a secondary approach would be to duplicate the adaptive filter

coefficients to directly filter the reverberant signal to get the dereverberated speech, as
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illustrated in Fig. 3.2.

To derive the adaptation equations, we want to maximize the kurtosis of ỹ(n), given by

J(n) =
E[ỹ4(n)]

E2[ỹ2(n)]
− 3 (3.5)

which constitutes our cost function. The gradient of J(n) with respect to current filter is

δJ

δh
=

(
4ỹ
E[ỹ2]ỹ2 − E[ỹ4]

E3[ỹ2]

)
x̃ = f(n)x̃(n) (3.6)

and hence, f(n) = 4ỹ
E[ỹ2]ỹ2 − E[ỹ4]

E3[ỹ2]
(3.7)

where f(n) is the desired feedback function used to control the filter update. The update

equation can be written as:

h(n+ 1) = h(n) + µf(n)x̃(n) (3.8)

where µ is the step-size. The expected values can be calculated recursively, as following:

E[ỹ2(n)] = βE[ỹ2(n− 1)] + (1− β)ỹ2(n)

E[ỹ4(n)] = βE[ỹ4(n− 1)] + (1− β)ỹ4(n)
(3.9)

The parameter β is the weighing factor in the recursive update, and controls the smoothness

of the moment estimates.

Kurtosis Approach

5.1 Unconstrained Maximization

In [6] Gillispie et al. present an unconstrained optimization algorithm. The LP residuals in
clean speech have strong peaks (high kurtosis) due to the glottal pulses but for reverberated
speech they are spread in time (low kurtosis). The approach is therefore to maximize the
kurtosis in LP residuals. [6] also uses the kurtosis of LP residuals as performance metric for
the algorithm. A steepest ascent algorithm is presented where the cost function is given as
the normalized kurtosis in equation (4.18). The block diagram for the algorithm is given in
figure 5.2.

A(z)
LP analysis

h(n)
Adaptive filter

A-1(z)
LP synthesis

feedback 
function

x(n)  nx~  ny~

f(n)

y(n)

Figure 5.2: Block diagram of the steepest ascent algorithm based on [6, fig. 2 (a)].

The adaptive filter h(n) is controlled by the feedback function f(n) given by the chosen cost
function (described later on). Assuming linearity for the filters, the LP artifacts generated in
the LP synthesis, can be avoided by the equivalent block diagram shown in figure 5.3. The
cost is an extra filter.

A(z)
LP analysis

h(n)
Adaptive filter

feedback 
function

 ny~

f(n)

y(n)h(n)
Adaptive filter

copy coefficients

x(n)

 nx~

Figure 5.3: Modified block diagram such that LP artifacts are avoided, based on [6, fig. 2 (b)].

The general idea is to maximize the chosen cost function. This is done by differentiating
the cost function, J(n), with respect to the filter coefficients h(n) and then update the filter
h(n + 1) in the direction the cost function increases the most. To assure that the algorithm
ascends for each time step n the following requirement is made

J(h(n+ 1)) > J(h(n)) (5.1)

The update is then given by

h(n+ 1) = h(n) + µ∆h

= h(n) + µ
∂J(h(n))

∂h(n)
(5.2)

where: µ is the step size 0 < µ < 1 [-]

28

Fig. 3.1 Block diagram of steepest ascent algorithm used for dereverbera-
tion.
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Kurtosis Approach

5.1 Unconstrained Maximization

In [6] Gillispie et al. present an unconstrained optimization algorithm. The LP residuals in
clean speech have strong peaks (high kurtosis) due to the glottal pulses but for reverberated
speech they are spread in time (low kurtosis). The approach is therefore to maximize the
kurtosis in LP residuals. [6] also uses the kurtosis of LP residuals as performance metric for
the algorithm. A steepest ascent algorithm is presented where the cost function is given as
the normalized kurtosis in equation (4.18). The block diagram for the algorithm is given in
figure 5.2.

A(z)
LP analysis

h(n)
Adaptive filter

A-1(z)
LP synthesis

feedback 
function

x(n)  nx~  ny~

f(n)

y(n)

Figure 5.2: Block diagram of the steepest ascent algorithm based on [6, fig. 2 (a)].

The adaptive filter h(n) is controlled by the feedback function f(n) given by the chosen cost
function (described later on). Assuming linearity for the filters, the LP artifacts generated in
the LP synthesis, can be avoided by the equivalent block diagram shown in figure 5.3. The
cost is an extra filter.
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 ny~

f(n)

y(n)h(n)
Adaptive filter

copy coefficients

x(n)

 nx~

Figure 5.3: Modified block diagram such that LP artifacts are avoided, based on [6, fig. 2 (b)].

The general idea is to maximize the chosen cost function. This is done by differentiating
the cost function, J(n), with respect to the filter coefficients h(n) and then update the filter
h(n + 1) in the direction the cost function increases the most. To assure that the algorithm
ascends for each time step n the following requirement is made

J(h(n+ 1)) > J(h(n)) (5.1)

The update is then given by

h(n+ 1) = h(n) + µ∆h

= h(n) + µ
∂J(h(n))

∂h(n)
(5.2)

where: µ is the step size 0 < µ < 1 [-]

28

Fig. 3.2 Modified block diagram to avoid LP artifacts in signal reconstruc-
tion from residual.

3.3 Complexity of the Algorithm

In this section, the computation complexity of the algorithm is discussed. Before the

analysis of the algorithm is made it is noted that this could be optimized, e.g., by using

pre-calculations of often used variables, using look-up tables, and optimizing with regards

to parallelism, because the algorithm utilize summations which can be calculated in par-

allel. Execution speed is critical because the application is a hearing aid, where real time

execution is required. Using parallel computation will help increase the execution speed

significantly. It will, however, require a processor which is capable of performing the cal-

culations in parallel.

The kurtosis maximization algorithm can be divided into four separate calculations de-

fined in Eq. 3.7, 3.8, and 3.9. Furthermore it is also necessary to calculate the output signal

y(n) of the filter once per algorithm update. In the following the number of multiplications

required to compute each of the equations is determined.

The filtering resulting in y(n) is defined as

y(n) = hTx (3.10)

The number of taps in the filter h(n) is equal to L and therefore Eq.3.10 requires L

multiplications to be computed. The number of required additions is not used in this

simple cost analysis.

The filter update equation, given in Eq.3.8, requires one multiplication in scaling (mul-
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tiplication by µ) the feedback f(n), and multiplying this result with the input vector x(n)

requires L multiplications because length of x(n) is L, thus total L+ 1 computations.

The feedback function is given in Eq.3.7. Squaring of ỹ(n) requires one multiplication,

and because the multiplication with the constant 4 can be included into the step size µ

in Eq.3.8, the nominator can be calculated using three multiplications. The denominator

requires two multiplications, and because it is assumed that a division requires the same

number of cycles as a multiplication, even though it is a rough approximation, the total

number of multiplications is six for this equation.

The first expectation operation, E[ỹ2(n)] defined in Eq.3.9 requires two multiplications,

because the squaring of ỹ has already been made in Eq.3.7, and the latter estimate E[ỹ2(n)]

requires three multiplications, because ỹ4(n) = ỹ2(n).ỹ2(n), where ỹ2(n) is known.

Hence, total number of calculation required to once update the filter = L + (L + 1) +

6 + 2 + 3 = 2L+ 12. Using the O-notation the complexity is O(L).

This concludes the chapter, and next we will look at some experiments and results.
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Chapter 4

Experiments and Results

In this chapter, experimental setup and various results are discussed.

4.1 Kurtosis and LP residual of reverberant speech

To verify that the kurtosis of the LP residual of a speech signal decreases with reverberation,

a room environment was simulated, using the algorithm proposed in [8], with following

details.

• Dimensions: 4× 13× 4 in m3.

• Mic Position: At [2,2,2]

• Source Position: Moving from [2,3,2] to [2,12,2]

• Reverberation time, T60 = 0.4 seconds.

A clean speech of 8000 Hz sampling frequency was convolved with the RIR. The kurtosis

of the LP residual of this output was calculated, and plotted against the distance between

source and mic, as depicted in Fig.4.1. As the distance between he source and mic increases,

the reverberation in the received speech increases, and the kurtosis of its residual decreases.

This is evident from the figure. It should be noted that one should expect similar results

if the source was fixed at [2,2,2], and the mic was moving. Furthermore, it can be seen

from the figure that the kurtosis of LP residual of clean speech is very high as compared

to that of the reverberated residual, and that the kurtosis of actual signal is not very high.

2012/02/20
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Fig. 4.1 Kurtosis vs distance between the source and microphone.

This small experiment establishes that the kurtosis of LP residual decreases with increase

in reverberation.

4.2 Derverberation Experiments

In this section, three dereverberation experiments are discussed, where a separate rever-

berant room impulse response is simulated for each experiment. For all the experiments

below β = 0.9 was used. For LP residual a hamming window of size 256, and filter-tap

length of 20 was used.
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4.2.1 Experiment 1

In the first experiment, a room of 4 × 4 × 4 meter cube dimension was considered, with

reverberant time, T60 = 0.7 seconds. A clean speech sampled at 8000 Hz was taken to be

originating from a source located at [2,2,2], and the microphone was situated as [2,3,2].

To understand the performance of the algorithm, waveforms of the signals, as well as LP

residuals were plotted. Spectrogram was analyzed using the “wave-surfer” software. Fur-

thermore, many people were asked to rate the improvement in reverberation for subjective

measures. The results are discussed below.

• The LP residuals of the clean as well as reverberant, and then the dereverberated

output were calculated. The waveforms are depicted in Fig. 4.2.
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Fig. 4.2 Waveforms of LP residuals of the clean, reverberant and derever-
berated speech - Exp 1.
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• To visualize the effect of reverberation in the speech signal, the waveforms of the

clean, reverberant, and processed speech were plotted, as illustrated in Fig. 4.3.
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Fig. 4.3 Waveforms of clean, reverberant and processed speech - Exp 1.

• In all the figures above, the kurtosis of the respective signal has also been marked

above its waveform. It is apparent from the plots that reverberation spreads the signal

energy in time making the LP residual less peaky; the kurtosis values of different LP

residuals also align with the results. It is also evident that the LP residual of the

filtered output is much closer to that of the clean speech, and the kurtosis value has

also increased.

• Spectrogram of all the three waveforms were plotted using “wave-surfer” software.

The same are shown in Fig. 4.4. It can be seen in the figure how different formants

are spread in time in the reverberant speech, and that the filtering process produces

a much cleaner picture for the dereverberant speech.

• Subjective Feedback: When listened to the reverberant and processed speech, the



4 Experiments and Results 18

output was perceptibly better than the input, in terms of significant mitigation in

reverberation.

4.2.2 Experiment 2

In this experiment, the case of blind dereverberation is tried. A reverberant speech from

ITU-T Wideband database was taken, for which no clean signal or room information was

available; the signal was sampled at 16000 Hz. To understand the performance of the

algorithm, waveforms of the signals, as well as LP residuals were plotted; and many people

were asked to rate the improvement in reverberation for subjective measures. The results

are discussed below.

• The LP residuals of the reverberant, and then the dereverberated are depicted in Fig.

4.5.

• On the same lines as of experiment - 1, the waveforms of the reverberant, and pro-

cessed speech were plotted, as illustrated in Fig. 4.6.

• Again, the kurtosis of the respective signal has also been marked above its waveform.

It is apparent from the plots that the LP residual of the filtered output is more peaky;

the kurtosis values also increase with decrease in reverberation.

• Subjective Feedback: When listened to the reverberant and processed speech, the

output was perceptibly better than the input, in terms of significant mitigation in

reverberation.

4.2.3 Experiment 3

In the aforementioned two experiments the algorithm was used as an offline algorithm,

that is, first the final set of filter coefficients was calculated by letting the simulation

run for whole length of the residual signal, and then the reverberant speech was filtered

through the adaptive filter, using the derived coefficients. However, the primary use of

dereverberation algorithms are in real-time scenarios, and hence, for this experiment the

filter was applied on-the-fly to the reverberant speech, and a gradual improvement in the

quality of speech was noticed. For the purpose of the experiment, same clean speech signal

as in Experiment-1 was used here, but for reverberation a real life RIR downloaded from
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Aachen Impulse Response database [10] was used. To understand the performance of the

algorithm, waveforms of the signals, as well as LP residuals were plotted. The results are

discussed below.

• The LP residuals of the reverberant, and then the dereverberated output are depicted

in Fig. 4.7.

• On the same lines as of experiment - 1, the waveforms of the reverberant, and pro-

cessed speech were plotted, as illustrated in Fig. 4.8.

• Again, the kurtosis of the respective signal has also been marked above its waveform.

It is apparent from the plots that the LP residual of the filtered output is more peaky;

the kurtosis values also increase with decrease in reverberation.

• Subjective Feedback: When listened to the reverberant and processed speech, the

output was perceptibly better than the input, in terms of significant mitigation in

reverberation. One could hear gradual improvement in the signal quality, as the algo-

rithm learns and adapts the filter coefficients with time; here a gradual improvement

in the quality of speech was noticed.

4.3 Summary

It was proved that the kurtosis of LP residual is a good measure of reverberation in speech.

Various experiments were used to validate that the algorithm works well for synthetic as

well as real life RIR. Finally experiment 3 proved the algorithm to be suitable for real time

scenarios.
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Fig. 4.5 Waveforms of LP residuals of the reverberant and dereverberated
speech - Exp 2.
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Fig. 4.7 Waveforms of LP residuals of the reverberant and dereverberated
speech - Exp 3.
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Chapter 5

Discussion and Conclusion

In this project maximum kurtosis based approaches to the blind speech dereverberation

problem was analysed. The applications targeted in this report are hearing aid, and hands-

free telephony systems, with a single microphone setup. The method was tested on simu-

lated and real life RIR’s with real voiced speech.

The implemented algorithm is based on the work by Gillespie et al., [4], who presented

a steepest-ascent solution for the problem. The source signal (the direct speech), s, is

assumed to be non-Gaussian distributed. The room then causes the observed signal (the

reverberated speech), x, to be corrupted by delayed and weighted versions of s, and intro-

duces Gaussian distributed components. A Gaussian distributed signal has higher order

cumulants equal to zero, and the approach is therefore to maximize the kurtosis of the

observed signal, such that the room impact on the source signal can be removed.

In conclusion, an interesting method to blind speech dereverberation has been imple-

mented and analysed in detail. Adjustments have been made on carefully performed tests

and the final word is that the algorithm is able to significantly reduce the undesired rever-

beration in speech.

Future Work

• Authors in [12] claim that an average over several spatially distributed microphones

can provide potentially better results, hence, it may be worthwhile to investigate into

multi-microphone setups.

2012/02/20
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• Time domain implementation is prone to slow or no convergence because of all vari-

ance in the eigenvectors of autocorrelation matrices of the input signal. Alternate

noise robust implementations may be investigated to avoid this issue, such as the

subband adaptive method promoted in [4].
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Appendix A

Matlab Codes

This section enlists various MATLAB codes used in this project.

Effect of reverberation on kurtosis

Here the algorithm to compare the effect of increasing reverberation on the kurtosis of LP residual

is given, as discussed in Section 4.1. Note that this code requires two external algorithms:

• Algorithm for calculating LP residual of speech. The algorithm is excluded because it is

very simple to implement.

• Algorithm to simulate the required room environment. The original codes were downloaded

from following link, which were then modified to fit the project’s need.

URL = http://www.eric-lehmann.com/ism bg.html

1 function kurt compare

% Compares the k u r t o s i s o f the LP r e s i d u a l f o r moving Src and Mic

3

s i g n a l=’ speech data /Room clean ’ ;

5 xc= wavread( s i g n a l ) ;

rxc = LPres ( xc , hamming (256) , 128 , 20) ; % Ca l cu l a t e s LP r e s i d u a l

7

d i s t = zeros (N, 1 ) ; % Distance between src and mic

9 kurt = zeros (N, 2 ) ; % Two vec t o r s to s t o r e d i f f e r e n t k u r t o s i s va l u e s

11 %% Define Room

room . Fs = 8000 ;

http://www.eric-lehmann.com/ism_bg.html
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13 room . dim=[4 13 4 ] ;

room . mic pos= mic ;

15 room . s r c t r a j=s r c ;

room . T60=0.7 ;

17

19 mic = 0 ;

s r c = 0 ;

21

%% Moving SRC and MIC

23

for i = 1 : N

25 i

i f i < 11

27 s r c = [ 2 2 2 ] ;

mic =[2 2+i 2 ] ;

29

myISM setup ( mic , s r c ) ; %% This c a l l s the modi f ied ISM) se tup func t i on

from Lehman−Johansson ’ s image−source method based room s imu la tor

31 ISM RIR bank ( myISM setup ( mic , s r c ) , s t r c a t ( ’ ISM RIRs mic ’ ,num2str( i ) , ’

. mat ’ ) ) ;

x = ISM AudioData ( s t r c a t ( ’ ISM RIRs mic ’ ,num2str( i ) , ’ . mat ’ ) , xc ) ;

33

r = LPres (x , hamming (256) , 128 , 20) ;

35 kurt ( i , 1 )= k u r t o s i s ( x ) ;

kurt ( i , 2 )= k u r t o s i s ( r ) ;

37 d i s t ( i ) = norm( mic−s r c ) ;

else

39 mic = [ 2 2 2 ] ;

s r c =[2 2+i−10 2 ] ;

41

myISM setup ( mic , s r c )

43 ISM RIR bank ( myISM setup ( mic , s r c ) , s t r c a t ( ’ ISM RIRs src ’ ,num2str( i ) , ’ .

mat ’ ) )

x = ISM AudioData ( s t r c a t ( ’ ISM RIRs src ’ ,num2str( i ) , ’ . mat ’ ) , xc ) ;

45

r = LPres (x , hamming (256) , 128 , 20) ;

47 kurt ( i , 1 )= k u r t o s i s ( x ) ;

kurt ( i , 2 )= k u r t o s i s ( r ) ;
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49 d i s t ( i ) = norm( mic−s r c ) ;

end

51 end

53 %% Plot Graphs

55 f igure

hold on

57 plot ( d i s t ( 1 : 1 0 ) , kurt ( 1 : 1 0 , 1 ) , ’ x ’ , ’ l i n ew id th ’ , 2 ) ;

t i t l e ( ’ Kurtos i s o f x vs d i s t anc e −− Src f i x e d Mic i s moving ’ )

59 plot ( k u r t o s i s ( xc ) , ’ ko ’ , ’ l i n ew id th ’ , 3 )

plot ( k u r t o s i s ( rxc ) , ’ kx ’ , ’ l i n ew id th ’ , 3 )

61 legend ( ’ Kurtos i s o f x ’ , ’ Kurtos i s o f Clean s i g n a l ’ , ’ Kurtos i s o f Clean

Res idual ’ )

hold o f f

63

65 f igure

hold on

67 plot ( d i s t ( 1 1 : 2 0 ) , kurt ( 1 1 : 2 0 , 1 ) , ’ x ’ , ’ l i n ew id th ’ , 2 ) ;

t i t l e ( ’ Kurtos i s o f x vs d i s t anc e −− Mic f i x e d Src i s moving ’ )

69 plot ( k u r t o s i s ( xc ) , ’ ko ’ , ’ l i n ew id th ’ , 3 )

plot ( k u r t o s i s ( rxc ) , ’ kx ’ , ’ l i n ew id th ’ , 3 )

71 legend ( ’ Kurtos i s o f x ’ , ’ Kurtos i s o f Clean s i g n a l ’ , ’ Kurtos i s o f Clean

Res idual ’ )

hold o f f

73

75 f igure

hold on

77 plot ( d i s t ( 1 : 1 0 ) , kurt ( 1 : 1 0 , 2 ) , ’ ∗ ’ , ’ l i n ew id th ’ , 2 ) ;

t i t l e ( ’ Kurtos i s o f Res idual vs d i s t anc e −− Src f i x e d Mic i s moving ’ )

79 plot ( k u r t o s i s ( xc ) , ’ ko ’ , ’ l i n ew id th ’ , 3 )

plot ( k u r t o s i s ( rxc ) , ’ kx ’ , ’ l i n ew id th ’ , 3 )

81 legend ( ’ Kurtos i s o f x ’ , ’ Kurtos i s o f Clean s i g n a l ’ , ’ Kurtos i s o f Clean

Res idual ’ )

hold o f f

83

figure ,
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85 hold on

plot ( d i s t ( 1 1 : 2 0 ) , kurt ( 1 1 : 2 0 , 2 ) , ’ ∗ ’ , ’ l i n ew id th ’ , 2 ) ;

87 t i t l e ( ’ Kurtos i s o f Res idual vs d i s t anc e −− Mic f i x e d Src i s moving ’ )

plot ( k u r t o s i s ( xc ) , ’ ko ’ , ’ l i n ew id th ’ , 3 )

89 plot ( k u r t o s i s ( rxc ) , ’ kx ’ , ’ l i n ew id th ’ , 3 )

legend ( ’ Kurtos i s o f x ’ , ’ Kurtos i s o f Clean s i g n a l ’ , ’ Kurtos i s o f Clean

Res idual ’ )

91 hold o f f

Listing A.1 Matlab code for comparing kurtosis of varying reverberation

Kurtosis Maximizing algorithm

This section provides the main algorithm utilized for dereverberation in this project, as discussed

in Section 3.2. This also requires the LPres.m code to calculate the LP-residual of the speech

signal.

1 function w = MaxKurto ( s i g n a l )

% s i g n a l i s the ” path ” to the speech f i l e

3

[ x , FS , NBITS]= wavread( s i g n a l ) ; % Reading the speech

5 x drvb = zeros ( length ( x ) ,1 ) ; %x drvb would be the f i l t e r output

7 sy so rde r = 20 ; %Fi l t e r−tap l e n g t h

9 %% Ca lcu l a t e the LP r e s i d u a l

r = LPres (x , hamming (256) , 128 , sy so rde r ) ;

11 % r = LPres ( x , ones ( sysorder , 1 ) , 128 , sy sorder ) ;

13 %% LMK

w = ones ( sysorder , 1 ) ∗0 . 0 5 ; % w are the f i l t e r −tap c o e f f i c i e n t s . I t i s a near

I d e n t i t y f i l t e r

15 w(1) =1;

f = zeros ( length ( r ) , 1 ) ; % The feedback func t i on

17

beta= 0 . 9 ; %Smoothness o f k u r t o s i s

19

y = zeros ( length ( x ) ,1 ) ; % output LP r e s i d u a l

21 ey2 = 0 ; %Expected va lue o f yˆ2
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ey4 = 0 ; %Expected va lue o f yˆ4

23 mu= 0.000388 ; %Step−s i z e

25 for n = 1 : length ( r )−sy so rde r+1

u = r (n : n+sysorder −1) ;

27 y (n)= w’ ∗ u ;

ey2 = beta∗ey2 + (1−beta ) ∗y (n) ˆ2 ; %Expected va lue o f yˆ2

29 ey4 = beta∗ey4 + (1−beta ) ∗y (n) ˆ4 ; %Expected va lue o f yˆ4

f (n )= 4∗( ey2∗y (n) ˆ2 − ey4 ) ∗y (n) /( ey2 ˆ3) ;

31

w = w + mu∗ f (n ) ∗u ; % updat ing f i l t e r c o e f f i c i e n t s

33 %% For on l ine a l gor i thm

v = x (n : n + syso rde r − 1) ;

35 x drvb (n) = w( : , n+1) ’ ∗ v ;

end

37

%% I f not an on l ine a l gor i thm

39 pa r f o r n = 1 : length ( x )−sy so rde r + 1 % Pa r e l l e l i z e d f o r loop f o r b e t t e r

performance

u = x (n : n + syso rde r − 1) ;

41 x drvb (n) = w’ ∗ u ;

end

43

%% Writing the . wav f i l e

45 wavwrite ( x drvb , FS , NBITS , s t r c a t ( s i g n a l ( 1 :end−6) , ’ ’ , room ( 5 :end−4) , ’ output ’ , ’

. wav ’ ) ) ;

sound( x drvb , FS) ;

47 wavwrite ( x drvb , FS , NBITS , ’ speech data /xDRoom meeting 0 0 1 . wav ’ ) ;

49 %% Plo t s

51 hold on

subplot (211)

53 plot ( x/max(abs ( x ) ) ) ; grid

xlabel ( ’ Samples ’ )

55 ylabel ( ’ Magnitude ’ )

k=k u r t o s i s ( x ) ;

57 t i t l e ( [ ’ Reverberated S igna l . Kurtos i s = ’ num2str( k ) ] )
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59 subplot (212)

plot ( x drvb /max(abs ( x drvb ) ) ) ; grid

61 xlabel ( ’ Samples ’ )

ylabel ( ’ Magnitude ’ )

63 k=k u r t o s i s ( x drvb ) ;

t i t l e ( [ ’ Dereverberated S igna l . Kurtos i s = ’ num2str( k ) ] )

65

67 rd = LPres ( x drvb , ones (256 ,1 ) , 128 , sy so rde r ) ; % To c a l c u l a t e the LP

r e s i d u a l o f the f i l t e r output

69 f igure

hold on

71 subplot (211)

plot ( r /max(abs ( r ) ) ) ; grid

73 xlabel ( ’ Samples ’ )

ylabel ( ’ Magnitude ’ )

75 k=k u r t o s i s ( r ) ;

t i t l e ( [ ’ Res idual o f Reverberated S igna l . Kurtos i s = ’ num2str( k ) ] )

77 subplot (212)

plot ( rd/max(abs ( rd ) ) ) ; grid

79 xlabel ( ’ Samples ’ )

ylabel ( ’ Magnitude ’ )

81 k=k u r t o s i s ( rd ) ;

t i t l e ( [ ’ Res idual o f Dereverberated S igna l . Kurtos i s = ’ num2str( k ) ] )

Listing A.2 Matlab code for the kurtosis maximizing algorithm
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